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Tese submetida à Faculdade de Ciências da Universidade do Porto

para obtenção do grau de Doutor em Matemática
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da Ciência, Tecnologia e Ensino Superior (MCTES).
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O meu agradecimento ao Centro de Matemática da Universidade do Porto (CMUP) e
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Resumo

Realçam-se nesta tese três problemas distintos na teoria de pseudovariedades de semi-

grupos finitos bem como diversas conexões entre eles.

Primeiramente é feito o estudo da pseudovariedade DA, cuja importância nos campos

da ciência da computação e da teoria da complexidade é evidenciada no “Diamonds are

forever” de Tesson e Thérien. Também os métodos profinitos desenvolvidos por vários

investigadores têm revelado potencialidades para a resolução de problemas na teoria de

semigrupos finitos. É feito o estudo do semigrupo pró-DA livre tendo como motivação o

facto de ele codificar toda a informação acerca das propriedades combinatórias e algébricas

dos semigrupos da pseudovariedade DA. Apresentam-se três representações das operações

impĺıcitas sobre DA: sob a forma de árvores etiquetadas de altura finita, sob a forma de

árvores etiquetadas quasi-ternárias, e sob a forma de ordens lineares etiquetadas. Mostra-

-se que duas operações impĺıcitas sobre DA são iguais se e só se tiverem a mesma repre-

sentação, para qualquer uma das representações referidas. Comprimindo a representação

em árvores etiquetadas quasi-ternárias, apresenta-se a denominada representação por DA-

-autómatos. Prova-se que, no caso da operação impĺıcita sobre DA ser um ω-termo, o

DA-autómato mı́nimo associado é finito, o que permite resolver o problema da palavra

para ω-termos sobre DA. Apresenta-se ainda um algoritmo com complexidade polinomial

para o cálculo do DA-autómato mı́nimo associado a um ω-termo. Com este intuito, são

estendidas a esta pseudovariedade técnicas desenvolvidas por Almeida e Weil, e Almeida

e Zeitoun aquando do estudo similar para a pseudovariedade R.

A segunda parte desta tese baseia-se no estudo do operador sobre pseudovariedades

que constrói a pseudovariedade gerada pelos elementos que são gerados por idempotentes

de uma pseudovariedade dada. Embora não se tenha conseguido determinar uma fron-

teira entre as pseudovariedades que são geradas por estes seus elementos e as que não

são, apresentam-se alguns exemplos relevantes de pseudovariedades com esta propriedade,

quer relacionando resultados já existentes na teoria de semigrupos, quer apresentando re-

sultados originais envolvendo ainda métodos profinitos. É dada particular atenção às

pseudovariedades J, R, L e DA.

Por último, inspirada num resultado de Tilson sobre a pseudovariedade dos semi-

grupos aperiódicos, é definida a propriedade da E-localidade sobre uma pseudovariedade.

Considera-se E-local uma pseudovariedade V que satisfaz a condição seguinte: para um

semigrupo finito, o subsemigrupo gerado pelos seus idempotentes pertence a V se e só

se também pertencerem a V os subsemigrupos gerados pelos idempotentes de cada uma
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8 RESUMO

das suas D-classes regulares. São apresentadas algumas condições necessárias ou sufi-

cientes para que uma pseudovariedade possua esta propriedade e é estendido o conceito

às pseudoidentidades, identificando-se mais algumas condições necessárias ou suficientes

para que uma pseudoidentidade seja deste tipo. Considera-se ainda um operador sobre

pseudovariedades que constrói a menor pseudovariedade E-local que contém uma dada

pseudovariedade e apresentam-se alguns exemplos.



Abstract

This thesis is concerned with three different problems in the theory of pseudovarieties

of finite semigroups as well as several connections between them.

Firstly, the pseudovariety DA is investigated. Its importance in computational and

complexity theory is evinced in the “Diamonds are forever” of Tesson and Thérien. The

profinite methods developed by several researchers have also been shown to be very power-

ful in the solution of problems in finite semigroup theory. Since the free pro-DA semigroup

encodes information about all algebraic and combinatorial properties of the semigroups

in DA, the study of this object is developed. Three representations of implicit operations

over DA are presented: the first one by means of finite-height labeled trees; the second

one by means of quasi-ternary labeled trees; and the third one by means of labeled linear

orderings. It is shown that two implicit operations over DA are equal if and only if they

have the same representation, for any of the representations. Wrapping the quasi-ternary

labeled trees we obtain the so-called representation by DA-automata. It is proved that

the representation by the minimal DA-automaton is finite if and only if the implicit op-

eration it represents is an ω-term, which solves the word problem for ω-terms over DA.

To complete the result, an algorithm with polynomial-time complexity to compute the

minimal DA-automaton associated to an ω-term is presented. For this purpose, the tech-

niques developed by Almeida and Weil, and Almeida and Zeitoun to solve the analogous

problem for the pseudovariety R are extended to this pseudovariety.

The second part of this thesis is based on the study of the operator on pseudovari-

eties that constructs the pseudovariety generated by the idempotent-generated elements

of a given pseudovariety. Although the boundary between the pseudovarieties that are

generated by these elements and those that are not has not yet been determined, several

relevant examples of pseudovarieties with this property are presented, either by relat-

ing existing results in semigroup theory, or by presenting original results involving also

profinite methods. Particular attention is paid to the pseudovarieties J, R, L and DA.

Finally, inspired by a property observed by Tilson in the pseudovariety of aperiodic

semigroups, the property of E-locality on a pseudovariety is defined. A pseudovariety V is

said to be E-local if it satisfies the following condition: for a finite semigroup, the subsemi-

group generated by its idempotents belongs to V if and only if so do the subsemigroups

generated by the idempotents in each of its regular D-classes. Several necessary or suffi-

cient conditions for a pseudovariety to have this property are presented and this concept

is extended to pseudoidentities, where some necessary or sufficient additional conditions
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10 ABSTRACT

for a pseudoidentity to be of this type are identified. The operator on pseudovarieties

which associates the smallest E-local pseudovariety that contains a given pseudovariety is

also considered, and some examples are presented.



Résumé

On met en évidence dans cette thèse trois problèmes différents dans la théorie des

pseudovariétés des semigroupes finis ainsi que plusieurs liaisons.

En premier, on fait l’étude de la pseudovariété DA, dont l’importance est soulignée dans

le “Diamonds are forever” de Tesson et Thérien dans les domaines de l’informartique et de

la théorie de la complexité. Les méthodes profinies développées par plusieurs chercheurs

ont aussi montré un potenciel pour résoudre des problèmes dans la théorie des semi-

groupes finis. On étudie le sémigroupe pro-DA libre face à la motivation venant du fait

qu’il contient toutes les informations sur les propriétés algébriques et combinatoires des

semigroupes de la pseudovariété DA. On présente trois représentations des opérations

implicites sur DA: sous la forme d’arbres étiquetés à hauteur finie, sous la forme d’arbres

étiquetés quasi-ternaires, et sous la forme d’ordres linéaires étiquetés. On prouve que

deux opérations implicites sur DA sont égaux si elles ont la même représentation, pour

chacune des représentations. Si l’on comprime la représentation pour arbres étiquetés

quasi-ternaires, on obtient une représentation par DA-automates. Au cas où l’opération

implicite sur DA est un ω-terme, on prouve que le DA-automate minimum associé est fini

et, par conséquent, le problème du mot pour ω-termes sur DA est résolu. On présente en

plus un algorithme avec complexité polynomiale pour calculer le DA-automate minimum

associé à un ω-terme. À ce but, on étend à la pseudovariété DA les techniques développées

par Almeida et Weil, et par Almeida et Zeitoun dans leurs études similaires pour la pseu-

dovariété R.

En second, cette thèse se rapporte à l’étude de l’opérateur qui associe à une pseu-

dovariété donnée la pseudovariété engendrée par ses membres qui sont engendrés par leurs

idempotents. Quoiqu’on n’arrive pas à déterminer la frontière entre les pseudovariétés qui

ont cette propriété et celles qui ne l’ont pas, on présente quelques exemples pertinents de

pseudovariétés avec cette propriété, soit en appliquant des résultats connus de la théorie

des semigroupes, soit par des résultats nouveaux utilisant encore des méthodes profinies.

On porte une attention particulière aux pseudovariétés J, R, L et DA.

Finalement, inspirée par un résultat de Tilson sur la pseudovariété des semigroupes

apériodiques, on définit la propriété de la E-localité sur une pseudovariété. Une pseu-

dovariété V est E-local si elle satisfait la condition suivante: pour un semigroupe fini,

le sous-semigroupe engendré par ses idempotents appartient à V si et seulement si les

sous-semigroupes engendrés par les idempotents de chacune de leurs D-classes régulières

appartiennent aussi à V. On présente des conditions nécessaires ou suffisantes pour qu’une
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12 RÉSUMÉ

pseudovariété ait cette propriété et on étend cette notion aux pseudoidentités. On iden-

tifie d’autres conditions nécessaires ou suffisantes pour q’une pseudoidentité soit de ce

type. On considère aussi l’opérateur sur les pseudovariétés qui construit la plus petite

pseudovariété E-local qui contient une certaine pseudovariété et on présente quelques ex-

emples.
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Introduction

The first significant result on finite semigroups is Suschkewitsch’s structure theorem

for finite simple semigroups [45]. This was generalized in 1940 by Rees [37] who gave a

structure theorem for completely 0-simple semigroups in which the finiteness assumption

is weakened to a chain condition on ideals. Many other structure results were obtained

following the key introduction of Green’s relations [19], often based on Rees’ Theorem

for the “local” structure meaning the structure of the principal factors. The algebraic

theory of semigroups that evolved partly along these lines up to the nineteen sixties is

presented in the two volumes of Clifford and Preston [15, 16]. Results specifically about

finite semigroups started to be proved again around the same time.

In the middle of the nineteen fifties, with logic and computer science, the theory of

finite automata and the study of languages recognized by them enter the scene. Kleene

calls such languages regular events and in 1956 [23], motivated by modeling of human

neural activity, he presents the fundamental theorem of the theory of finite automata: the

regular languages are those which admit rational expressions in finite languages using only

the Boolean finitary operations, the operation of concatenation and the star operation (the

so called rational languages). Following this result, Schützenberger [41] establishes that

the star-free languages are those whose syntactic semigroups, which can be automatically

constructed from a rational expression [33], are finite and all its subgroups are trivial.

Schützenberger thus begins the study of algebraic properties of syntactic semigroups in

order to understand combinatorial properties of rational languages. Later, Brzozowski and

Simon [14], and McNaughton [27] prove that a language is locally testable if and only if its

syntactic semigroup is finite and all its submonoids are semilattices, and Simon [43] also

shows that a rational language is piecewise testable if and only if its syntactic semigroup

is J -trivial.

According to Satoh, Yama and Tokizawa [40] there exist about 1.8 billion of non-

isomorphic nor anti-isomorphic semigroups of order 8. Does the classification of finite

semigroups up to isomorphism is apparently unfeasible. In 1976, Eilenberg [17] introduces

the concept of varieties of rational languages, of which the classes of languages of the

above results are examples, and he establishes a one-to-one correspondence between these

varieties and certain classes of finite semigroups, called pseudovarieties, which consist

of classes of finite semigroups that are closed under the formation of subsemigroups,

homomorphic images, and finite direct products. Since then the interest in the theory of

pseudovarieties has been growing steadily.
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16 INTRODUCTION

On the other hand, in the middle of the nineteen sixties, Krohn and Rhodes [24] in-

troduce the notion of division and state the Prime Decomposition Theorem: every finite

semigroup divides a wreath product in which the factors are, alternately, finite (permuta-

tion) groups and finite aperiodic (transformation) semigroups. The least number of group

factors in such a decomposition is said to be the (group) complexity of the semigroup [24].

The question then arises of how to build an algorithm that computes the group complex-

ity of any finite semigroup; even the existence of such an algorithm is still unknown and

this is a major open problem in the theory of finite semigroups. A detailed description of

the Krohn-Rhodes complexity theory in various stages of development is given by Rhodes

and Tilson in [10], by Tilson in the last two chapters of Eilenberg [17] and, most recently,

by Rhodes and Steinberg [39].

The results in Universal Algebra of finite structures led to important developments

in the theory of finite semigroups. Already the founder of Universal Algebra, Garrett

Birkhoff, considered in 1937 the notion of profinite algebra namely of a projective limit

of finite discrete algebras [13]. Unlike the finite world, in profinite world there exist

free objects. For a pseudovariety (of semigroups) V, we denote by ΩAV the free pro-V

semigroup, that is the projective limit of all semigroups of V generated by an alphabet A.

This semigroup encodes information about all algebraic and combinatorial properties of

the elements of V, which strongly motivates the study of these relatively free objects. Until

now very little is known about them. A pseudoidentity is a formal equality of elements of

a free profinite semigroup. Reiterman [38] proves that the pseudovarieties are exactly the

classes defined by pseudoidentities. Since the nineteen nineties, with the development of

profinite methods by various authors led essentially by Almeida (see [1, 3, 4]), the theory

of finite semigroups has made remarkable progress. This new approach attempts to answer

questions in the theory of finite semigroups, for example by solving word problems for free

objects and by finding bases of pseudoidentities for pseudovarieties.

A typical problem in the theory of finite semigroups is called the membership prob-

lem for a pseudovariety, which consists in determining whether a given finite semigroup

belongs to it. A pseudovariety is said to be decidable if so is its membership problem.

Many important pseudovarieties can be built from others by applying natural operators.

It is known that the decidability of the membership problem is not preserved under many

such operators on pseudovarieties (cf. [12]), which leads to a case by case investigation

of decidability of pseudovarieties obtained by the application of such operators. In an

attempt to establish the decidability of semidirect products of pseudovarieties of semi-

groups, Almeida and Steinberg [6] introduce the notion of tameness, a property that they

then thought might lead to a substantial reduction of the Krohn-Rhodes problem. To

prove σ-tameness (tameness relatively to a given signature σ) of a pseudovariety we have

to solve two problems: the σ-word problem and another one that consists in proving that,

if a system of equations with rational constraints has a solution in any semigroup of the

pseudovariety, then it also has a solution in σ-terms. From the results of Ash [11], it
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follows that the pseudovariety of all finite groups is tame relatively to the signature con-

sisting of multiplication and pseudoinversion. This result was rediscovered independently

as a deep result in model theory [20], which further motivates the study of the property

of tameness in other pseudovarieties. Several researchers have considered and established

various forms of tameness for specifics pseudovarieties.

In 1976, Schützenberger [42] shows the importance of the pseudovariety DS, consist-

ing of all finite semigroups whose regular D-classes are subsemigroups. He describes the

varieties of languages corresponding to various subpseudovarieties of DS in terms of clo-

sure operators for restricted forms of the concatenation product. The class DA of all

finite semigroups whose regular elements are idempotents deserves specially attention.

More recently, in their “Diamonds are forever”, Tesson and Thérien [46] show that lan-

guages whose syntactic monoid lies in DA have remarkable characterizations, algebraic,

combinatorial, logical and even automata-theoretical, that lead to the solution of prob-

lems in computational and complexity theory. We recommend [46] for examples of such

applications. This strongly motivates the study of the pseudovariety DA.

This thesis is written in the form of four papers, presented as appendices. There is

also an extra appendix contained some computer programs. In the first two papers we

investigate the pseudovariety DA, with the study of its free profinite object. In Paper 1

we give three representations of the free pro-DA semigroup on a finite alphabet: the first

one by means of finite-height labeled trees; the second one by means of quasi-ternary

labeled trees; and the third one by means of labeled linear orderings. To obtain such

results, we extend to DA some techniques used by Almeida and Weil [7], and Almeida

and Zeitoun [8, 9] introduced for the description of free profinite semigroups over R. We

also develop the representation by quasi-ternary labeled trees, resulting from wrapping

DA-trees. We obtain a representation by DA-automata, which is not necessarily finite. In

Paper 2, we show that the representation by the minimal DA-automaton is finite if and

only if the element it represents is an ω-term. This allows us to compute the minimal DA-

automaton of a given ω-term, and the paper presents a polynomial-time algorithm that

performs such a computation. It is then possible to decide whether two ω-terms are equal

over all elements of the pseudovariety DA by testing the equality of the corresponding

minimal DA-automata and, therefore, the word problem for ω-terms over DA is solved in

polynomial-time. In Appendix 5, we present the complete programming of our algorithm

in Python to compute and to visualize the minimal DA-automaton of an ω-term.

In order to acquire and consolidate knowledge in the theory of finite semigroups, in

particular, in the theory of pseudovarieties and its relationship with the varieties of ratio-

nal languages, the work for the preparation of this thesis began with the detailed study

of Pin’s book [36]. One of the exercises led to the characterization of the so called E-local

pseudovarieties, the exercise consisting in establishing this property for the pseudovariety

of aperiodic semigroups. This result was first observed by Tilson [47] when he established

a method for calculating the complexity of a finite semigroup with a maximum of two
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non-zero D-classes. We say that a pseudovariety V is E-local if it satisfies the following

property: for a finite semigroup, the subsemigroup generated by its idempotents belongs

to V if and only if so do the subsemigroups generated by the idempotents in each of its

regular D-classes. In Paper 4, we present several necessary or sufficient conditions for

a pseudovariety to be E-local and we extend this concept to pseudoidentities, calling E-

local a pseudoidentity which defines an E-local pseudovariety. Various characterizations

of pseudoidentities with this property can be easily deduced, and we enlarge this study

by presenting some more necessary or sufficient conditions for pseudoidentities to be of

this type. Finally, we introduce a new operator which associates to a pseudovariety the

smallest E-local pseudovariety containing it. For the results obtained in Paper 4, we

use properties of idempotent-generated subsemigroups (in particular, the work of Fitz-

Gerald [18]) and blocks of such subsemigroups.

It is in the attempt to characterize E-local pseudovarieties that we engaged in the study

of idempotent-generated semigroups. And one question that immediately arises is how to

determine which pseudovarieties are generated by their idempotent-generated members,

which is the subject of Paper 3, done in collaboration with Almeida. We apply, in parallel,

three different approaches to the problem of proving that certain pseudovarieties have

that property. On the one hand, there are the works of Petrich and Reilly [35], Pastijn

and Yan [31, 32], and Petrich [34] using embeddings of semigroups into idempotent-

generated Rees matrix semigroups, which allow us to conclude that the pseudovarieties H̄,

CR and CS have the property in question. On the other hand, several authors have

studied the property of a certain transformation semigroup be idempotent-generated. In

particular, we use the following results: every finite semigroup embeds in a finite regular

idempotent-generated semigroup [21]; the semigroup of contractive full transformations

on a set and the semigroup of contractive and order-preserving full transformations on

a set are idempotent generated [26, 22]. Combining these last two results with the

representation theorems for R-trivial monoids and J -trivial monoids due to Pin [36] and

Straubing [44], respectively, we obtain that the pseudovarieties R, L and J also have the

property in question. In the third approach to this question, we use profinite methods

to obtain division properties of the semigroups of J, R, L, and also DA into idempotent-

generated semigroups in the same pseudovariety. This new approach provides a significant

improvement in terms of the reduction of the generator rank and idempotent-generator

rank of the idempotent-generated semigroup, and such an analysis is also carried out at

the end of Paper 3.

Several results obtained in Paper 3 are crucial to reach some of the conclusions in

Paper 4. Moreover, it turns out that, chronologically the work for this thesis began with

the problem concerned in Paper 4, from where we were led to the main question of Paper 3,

which in turn raised the questions on the pseudovariety DA addressed in Papers 1 and 2.

Because this thesis is composed of several papers, the chapters which constitute them,

and which appear in the form of appendices, are essentially self-contained, each having



INTRODUCTION 19

its own introduction and bibliography, which might repeat some of the content referred

in this introduction.

All papers which compose this thesis have been submitted to international journals

and are available as preprints from Centro de Matemática da Universidade do Porto

(see [28, 30, 5, 29]).

Finally, we suggest as main references to the theory of finite semigroups, pseudova-

rieties, and profinite semigroups, the books of Eilenberg [17], Lallement [25], Pin [36],

Almeida [1], and Rhodes and Steinberg [39].





Conclusion

From all work developed in this thesis, we emphasize the following observations, con-

clusions and problems.

Representations of the free profinite object over DA and the word problem

for ω-terms over DA

For an implicit operation w ∈ ΩADA\{1}, Almeida [2], and Trotter and Weil [48]

define the central basic factorization of w, CBF(w), as a factorization of one of the following

forms:

(i) standard form: w = αaγbβ with a, b ∈ A, α, β, γ ∈ ΩADA, a /∈ c(α), b /∈ c(β) and

c(αa) = c(bβ) = c(w);

(ii) overlapped form: w = αbγaβ with a, b ∈ A, α, β, γ ∈ ΩADA, a /∈ c(αbγ), b /∈
c(γaβ) and c(αbγa) = c(bγaβ) = c(w);

(iii) degenerate form: w = αaβ with a ∈ A, α, β ∈ ΩADA, a /∈ c(α), a /∈ c(β) and

c(αa) = c(aβ) = c(w).

This central basic factorization of w ∈ ΩADA\{1} exists and is unique by Almeida [2].

Moreover, we may iterate this factorization. We do this in two different ways: in the

first one we iterate the factorization while the content of the central factor (if it exists)

does not decrease and in the second one we iterate until the central factor (if it exists)

becomes 1. Results from Almeida [2, 1], and Almeida and Weil [7] allow us to conclude

that, in case the iterated central basic factorization ICBF(w) is an infinite product, then

it converges. We obtain two different iterated central basic factorizations that we denote

by I1CBF(w) and I2CBF(w), respectively. Finally, we apply successively the corresponding

factorization to each factor in ICBF(w), which is a finite process because the contents of

the factors involved strictly decrease.

From I1CBF(w) we may represent an implicit operation w on DA by a tree with the

following form. It has a root and its direct progeny has ordered vertices in a one-to-one

correspondence with the factors of I1CBF(w). The odd vertices, reading from left to right

and from right to left in case the progeny is infinite, correspond to the factors αi, βi

and γ of I1CBF(w). We iterate this process on these vertices. The other vertices, called

leaves, correspond to the distinguished letters and are labeled by them. We obtain a

representation by a labeled tree of finite height. The set of these trees is denoted by

T1(A) and is in bijection with the elements of ΩADA.
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The second representation is by quasi-ternary labeled trees and consists of the follow-

ing. The tree corresponding to an implicit operation w has a root labeled with the pair of

distinguished letters of CBF(w) (or with just one letter, in case of the degenerate form).

The direct progeny has ordered vertices in a one-to-one correspondence with the factors

α, β and γ of CBF(w). We iterate this process on each of these vertices. This type of

representation is in the set T2(A) that we proved that is also in bijection with ΩADA.

If, in the latter representation, we identify vertices with the same attached subtrees, we

obtain the so-called representation by minimal DA-automata. We prove that two implicit

operations over DA are equal if and only if they have isomorphic minimal DA-automata.

For every tree in T1(A), we consider the labeled linear ordering obtained by ordering

the set of leaves from left to right. This linear ordering belongs to rLO∗(A) and we

prove that the sets T1(A) and rLO∗(A) are in bijection. We may have an analogous

representation by labeled linear orderings that is in bijection with the set T2(A). In fact,

we observe how to relate all these representations of an implicit operation over DA.

If we work with an ω-term w, we prove that the set of factors containing w and

closed under taking factors of the central basic factorization is finite. It follows that the

minimal DA-automaton associated to an ω-term is also finite. We present an algorithm

that effectively computes a finite DA-automaton for every ω-term and, using existing tools,

we minimize it. So, the word problem for ω-terms over DA is solved. The complexity of

this computation does not exceed O((nK)4). We do not know whether this upper bound

for the complexity of the word problem is optimal.

Idempotent-generated semigroups and pseudovarieties

Let E be the operator that constructs the pseudovariety VE generated by all idempotent-

generated elements of a given pseudovariety V. It is an idempotent increasing operator

such that, given a pseudovariety V, the equations XE = VE and EX = EV in the variable

X are equivalent and the class of its solutions is the interval [VE,EV].

The main problem addressed in this paper is to determine which pseudovarieties satisfy

the equality V = VE. Although some of the results obtained are not new, we present new

approaches that are of interest. We use the embedding into the idempotent-generated Rees

matrix semigroup of Petrich [34] and we observe that every pseudovariety of the form H̄

satisfies the equality. Considering idempotent-generated subsemigroups of Petrich’s Rees

matrix semigroup, we prove that the pseudovarieties CS and CR also satisfy the equality.

Using profinite methods, we obtain the following theorem:

Theorem 1. Let V be a pseudovariety such that, for every n, there exists m such that

ΩnV embeds in 〈X〉 for some X ⊆ E(ΩmV). Then VE = V.

Moreover, the representations of the free profinite semigroups over J, R and DA ob-

tained, respectively, by Almeida [1], Almeida and Weil [7], and in the first part of this the-

sis enable us to establish the following embedding from ΩnV into an idempotent-generated
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subsemigroup of Ωn+1V, for V ∈ {J,R, L,DA}:
µV : ΩnV → Ωn+1V

xi 7→ xω
i y

ω,

which, combined with the above theorem, proves that the equality V = VE holds for the

pseudovarieties J, R, L and DA.

Finally, we prove that every pseudovariety in the interval [J,DS] has infinite generator

rank and idempotent generator rank. We also determine a lower bound for the idempotent

generator rank of the subpseudovarieties generated by all n-generated members of any

pseudovariety in the interval [J,DA]. The above embedding allows us to conclude that

this lower bound is the exact value in the case of the pseudovarieties J, R, L and DA.

It remains an open problem to define the boundary between the pseudovarieties which

satisfy the equality V = VE and the ones that do not satisfy it. The particular case of the

pseudovariety DS motivates the research for a corresponding representation result, which

at present is yet inaccessible.

E-local pseudovarieties

We say that a pseudovariety V is E-local if it satisfies the following property: given

S ∈ S, 〈E(S)〉 ∈ V if and only if 〈E(D)〉 ∈ V, for every regular D-class D of S.

An easy observation, that follows from properties of subsemigroups generated by sub-

sets of idempotents of a finite semigroup S, is that, if V is an E-local pseudovariety, then

any pseudovariety in the interval [VE,EV] is also E-local.

Combining the technique of Fitz-Gerald [18] that consists in writing a product of

idempotents of 〈E(S)〉 as a product of idempotents of 〈E(D)〉, for a regular D-class D

of S, with some easy results involving blocks of subsemigroups generated by subsets of

idempotents of S, enable us to reach several results.

Firstly, the families of pseudovarieties BV, DV and H̄ are E-local, where V and H

are, respectively, an arbitrary pseudovariety and an arbitrary pseudovariety of groups.

It follows immediately that the pseudovarieties J, R, L and A satisfy the same property.

Moreover, with the equality JE = J obtained in this thesis, we prove that J is the small-

est pseudovariety having this property. These results allow us to readily determine if a

pseudovariety V is E-local, for many pseudovarieties V.

Theorem 3.10 of Paper 4 presents several sufficient conditions for a pseudovariety to be

E-local in terms of special interactions of the operators E and B on a given pseudovariety.

It is also showed that these conditions are even necessary in case the pseudovariety is

contained in EDS.

Since there are pseudovarieties which are not E-local, we consider the operator E

that associates to a pseudovariety V the smallest E-local pseudovariety VE containing it.

In particular, we obtain the following examples: (CS)E = (DS)E, (CR)E = (DS)E and

(DS)E ⊆ (LG)E ⊆ DS, which provides additional motivation for the calculation of (DS)E.
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Finally, we extend this property to pseudoidentities and we call E-local a pseudoiden-

tity which defines an E-local pseudovariety. Besides the characterizations of E-local pseu-

doidentities that immediately follow from Theorem 3.10 of Paper 4, we also present several

necessary or sufficient conditions for a pseudoidentity to be E-local.

On one hand, we use the equality V = VE for the pseudovarieties J, R, L and DA, and

we relate the E-locality of pseudoidentities of the form u = v, where first(u) 6= first(v) or

last(u) 6= last(v), with the condition V ⊆ Ju = vK, where V is one of such pseudovarieties.

On the other hand, we use again the result from Fitz-Gerald [18] to obtain another

sufficient condition for a pseudoidentity u = v to be E-local: u, v ∈ 〈X〉 with all elements

of X ⊆ ΩAS lying in a same regular D-class of ΩAS. We do not know if every E-local

pseudovariety is defined by a set of pseudoidentities of this form although we can show

that many examples of E-local pseudovarieties do enjoy this property.
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[45] A. K. Suschekewitsch, Über die endlichen Gruppen ohne das Gesetz der eineutigen Umkehrbarkeit,

Math. Ann. 99 (1928) 30–50.

http://cmup.fc.up.pt/cmup/v2/include/filedb.php?id=275&table=publicacoes&field=file
http://cmup.fc.up.pt/cmup/v2/include/filedb.php?id=275&table=publicacoes&field=file
http://cmup.fc.up.pt/cmup/v2/include/filedb.php?id=296&table=publicacoes&field=file
http://cmup.fc.up.pt/cmup/v2/include/filedb.php?id=296&table=publicacoes&field=file
http://cmup.fc.up.pt/cmup/v2/include/filedb.php?id=276&table=publicacoes&field=file
http://cmup.fc.up.pt/cmup/v2/include/filedb.php?id=276&table=publicacoes&field=file


BIBLIOGRAPHY 27
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REPRESENTATIONS OF THE FREE PROFINITE OBJECT
OVER DA

ANA MOURA

Abstract. In this paper, we extend to DA some techniques developed by
Almeida and Weil, and Almeida and Zeitoun for the pseudovariety R to obtain
representations of the implicit operations on DA: by labeled trees of finite
height, by quasi-ternary labeled trees, and by labeled linear orderings. We
prove that two implicit operations are equal over DA if and only if they have
the same representation, for any of the three representations. We end the
paper by relating these representations.

1. Introduction

The importance of the study of pseudovarieties of finite monoids became evident
with Eilenberg [10] in the middle of the 1970’s, who established the correspondence
between varieties of rational languages and those classes of finite monoids. Some
years later, Reiterman [11] showed that every pseudovariety of finite monoids is
defined by some set of finitary pseudoidentities, which are equalities between im-
plicit operations. As implicit operations over a pseudovariety of monoids contain
information on the structure of the finite monoids in the pseudovariety, it became
important to develop the study of the set of implicit operations over a pseudovariety
V on a finite alphabet A, ΩAV, which has the structure of a pro-V monoid.

Schützenberger [13] noted the interest of the study of the pseudovariety DS and
Almeida and Weil [7] stated that for this pseudovariety and its subpseudovarieties it
should be easy to make a description of the free profinite object. In fact, Almeida [1]
factorized each element of the free profinite monoid over J in terms of component
projections and idempotents and Azevedo [9] proved that a similar kind of factor-
ization could be implemented to any subpseudovariety of DS, although it has not
yet been discovered a canonical form of such factorizations in this pseudovariety.
Almeida and Weil [7] gave two complementary descriptions of the monoid of im-
plicit operations on R, one by labeled ordinals and the other by labeled infinite trees
of finite depth. They did a similar study for the pseudovariety DRG. On the other
hand, in their recent work, Almeida, Costa and Zeitoun [5, 6] presented structural
properties of the free profinite semigroup over A.

In their “Diamonds are forever”, Tesson and Thérien [14] showed that languages
whose syntactic monoid lies in DA have powerful characterizations, from combina-
torial ones, to logical and even automata-theoretical ones. This characterizations

2000 Mathematics Subject Classification. 20M05; 20M07; 20M35.
Key words and phrases. Finite monoid; pseudovariety; profinite monoid; implicit operation;

aperiodic; regular D-class.
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are useful to solve problems in computational and complexity theory and the au-
thors gave examples of such applications. They emphasize that these problems are
efficiently solvable when the syntactic monoid, besides being aperiodic, is in DA.

Thus, it becomes interesting to characterize the free profinite object over DA. In
this paper, we present three representations of the free pro-DA object on a finite
alphabet extending techniques developed for the pseudovariety R: the first one by
means of finite-height labeled trees, using the ideas of Almeida and Weil [7], the
second one by means of quasi-ternary labeled trees, based on the work of Almeida
and Zeitoun [8] and the last one by means of labeled linear orderings, extending
the description done by Almeida and Weil [7]. In connection with the second
representation, we also exhibit a representation by wrapped automata, which turns
out to be useful for recent work of the author.

The paper is organized as follows. In Section 2, we recall the basics of the theory
of pseudovarieties of monoids, pro-V monoids and some notions on automata and
linear orderings. In Section 3, we use the central basic factorization of an implicit
operation on DA and we present two forms of iteration of that factorization. We
prove the convergence of the infinite product resulting from the iterated factoriza-
tions and we end it with a characterization of the idempotents in terms of the type
of iterated central basic factorization. In Section 4, we present the representations
of the implicit operations over this pseudovariety that we had announced above.
We end the section by relating the various representations.

2. Preliminaries

We briefly recall some basics of the theory of pseudovarieties of monoids, profinite
monoids, automata and linear orderings and we introduce some related notation.
We recommend [2, 4] for a better understanding of these concepts and [12] as a
reference on linear orderings.

In this paper, A is a finite set called alphabet and its elements are called letters.
We denote by A∗ (respectively by A+) the free monoid (respectively the free semi-
group) generated by A, whose elements are called words. The empty word is denoted
by 1. The length of a word u is denoted by |u| and the cardinality of A is denoted
by |A|. The content of a word u is the smallest subset B of A such that u ∈ B∗. In
particular, the content of the empty word is ∅. Finally, a word u = a1 · · · an, with
ai ∈ A, for all i, is a subword of v if there exist words v0, v1, . . . , vn ∈ A∗ such that
v = v0a1v1 · · · anvn.

Given a semigroup S, we denote by S1 the monoid defined as follows: if S is
itself a monoid, then S1 = S; otherwise, S1 = S ∪ {1}, where 1 is an element that
does not belong to S and the multiplication in S1 is the (unique) extension to the
multiplication in S in which 1 acts as a neutral element. For s ∈ S, we denote by sω

the unique idempotent in the subsemigroup generated by s and we set sω+1 = sωs.
A class of finite monoids that is closed under taking submonoids, homomorphic

images and finite direct products is called a pseudovariety and generally denoted by
V. For example, M is the pseudovariety of all finite monoids, R is the pseudovariety
of allR-trivial monoids, where a monoid S isR-trivial if, for all s, t ∈ S, sRt implies
s = t. In this paper, we are interested in DA, the pseudovariety of monoids whose
regular D-classes are aperiodic semigroups. Note that a semigroup S is aperiodic if
sω = sω+1, for all s ∈ S, and a monoid S is in DA if and only if, for all s, t ∈ S, we
have (st)ω(ts)ω(st)ω = (st)ω and sω = sω+1.
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A topological monoid is a monoid equipped with a topology for which the mul-
tiplication in the monoid is a continuous function. We view a finite monoid as a
topological monoid with respect to the discrete topology. A topological monoid S is
a profinite monoid (respectively a pro-V monoid) if it is a compact monoid which is
residually finite (respectively residually in V), which means that, whenever s, t ∈ S
and s 6= t, there exists a continuous homomorphism ϕ : S → F into a finite monoid
(respectively into a member of V) such that ϕ(s) 6= ϕ(t). It is well known that
profinite monoids are 0-dimensional, which means that the topology has an open
basis consisting of clopen sets (which is equivalent to being a totally disconnected
monoid).

Given an alphabet A and a pseudovariety V, the free pro-V monoid on A, denoted
by ΩAV, is the unique (up to isomorphism of topological monoids) pro-V monoid
such that, for every mapping µ : A→ T into a pro-V monoid T , there is a unique
continuous homomorphism µ̂ : ΩAV→ T such that µ̂◦ ι = µ, where ι : A→ ΩAV is
the natural generating function. The elements of ΩAV are called implicit operations
on V or pseudowords. For a pseudovariety V containing Sl, the content function is
the unique continuous homomorphism c : ΩAV → P(A) such that cι(a) = {a}, for
all a ∈ A.

A pseudoidentity is an equality of the form u = v, with u, v ∈ ΩAM, and |A| is
called the arity of the pseudoidentity. We say that a pseudoidentity is valid in a
profinite monoid T , and we write T |= u = v, if ϕ(u) = ϕ(v) for every continuous
homomorphism ϕ : ΩAM → T . Reiterman’s Theorem [11] says that every pseu-
dovariety is defined by some set of finitary (A is finite) pseudoidentities. That the
class of all finite monoids which verify all the elements of a set of pseudoidentities is
a pseudovariety follows immediately from the fact that the validity of a pseudoiden-
tity in a finite monoid is preserved under taking homomorphic images, submonoids
and finite direct products. For example, the pseudovariety DA is defined by the set
of pseudoidentities {(xy)ω(yx)ω(xy)ω = (yx)ω , xω = xω+1}.

A deterministic automaton over an alphabet A is a tuple A = (V,→, q, F ), where
V is the set of states, q ∈ V is the initial state, F ⊆ V is the set of final states
and →: V × A→ V is its transition function. We denote by v.a the state reached
from v by reading the letter a, if this state exists, and we denote by v.L the set of
states reached from v by reading some word of L.

Finally, we suppose that the reader is acquainted with the basic notions of linear
orderings. In this paper, we use two different linear orderings of the set of natural
numbers: the usual ordering, RN, and the backwards ordering, R∗

N. We also use
suborderings of these orderings and operations on linear orderings. We denote by
ω, ω∗ and n the order type of 〈N, RN〉, 〈N, R∗

N〉 and 〈P, R〉, which is a subordering
of 〈N, RN〉 with |P | = n, respectively.

3. Factorization of implicit operations and convergence of infinite
products in pro-DA monoids

Let w ∈ ΩADA\{1}. We define the central basic factorization of w (see Almeida [3]
or Trotter and Weil [15]) as a factorization of one of the following forms:

(i) standard form: w = αaγbβ with a, b ∈ A, α, β, γ ∈ ΩADA, a /∈ c(α),
b /∈ c(β) and c(αa) = c(bβ) = c(w);

(ii) overlapped form: w = αbγaβ with a, b ∈ A, α, β, γ ∈ ΩADA, a /∈ c(αbγ),
b /∈ c(γaβ) and c(αbγa) = c(bγaβ) = c(w);
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(iii) degenerate form: w = αaβ with a ∈ A, α, β ∈ ΩADA, a /∈ c(α), a /∈ c(β)
and c(αa) = c(aβ) = c(w).

By the following theorem, the central basic factorization of w ∈ ΩADA\{1} exists
and is unique:

Proposition 3.1 (Almeida [3]). Let w ∈ ΩADA\{1}. Then w has a unique central
basic factorization. In other words, if w, w′ ∈ ΩADA\{1}, the equality w = w′ is
valid in DA, and Φ and Ψ are central basic factorizations of w and w′, respectively,
then the two factorizations are both of the same type ((i),(ii) or (iii)) and the
equalities of factors in corresponding positions are valid in DA.

We denote the central basic factorization of w by the tuple CBF(w) = (α, a, γ, b, β)
or by the triple CBF(w) = (α, a, β), as it is of the standard or overlapped form, or
of the degenerate form, respectively.

For what follows, we define two different types of iteration of this factorization:
in the first one we iterate the factorization while the content of the central factor
(if it exists) does not decrease and in the second one we iterate until the central
factor (if it exists) becomes 1. We proceed to explain this in detail.

Let γ0 = w. If c(γk) = c(w), we consider the central basic factorization of γk

which, in the case of being of the standard form, is γk = αk+1ak+1γk+1bk+1βk+1.
The (k + 1)-iteration of the central basic factorization of w is w = α1a1 · · ·αk+1 ·
ak+1γk+1bk+1βk+1 · · · b1β1 and γk+1 is called the remainder of order k + 1. We
iterate this process while γk exists and c(γk) = c(w). If, for any n, c(γn) 6= c(w)
and γn−1 admits a central basic factorization of the standard form, then w =
α1a1 · · ·αnanγnbnβn · · · b1β1 is called the iterated central basic factorization of type
1 of w and is called standard and of length n. If c(γn−1) = c(w) and γn−1 has
an overlapped central basic factorization, then w = α1a1 · · ·αnbnγnanβn · · · b1β1 is
the iterated central basic factorization of type 1 of w and is called overlapped and of
length n. If c(γn−1) = c(w) and γn−1 has a degenerate central basic factorization,
γn−1 = αnanβn , then w = α1a1 · · ·αnanβn · · · b1β1 is the iterated central basic
factorization of type 1 of w and is called degenerate and of length n. We say that,
in the first two cases, γn is the remainder of the central basic factorization of w,
while in the degenerate case there is no remainder. Finally, if c(γn) = c(w), for
all n, we say that w admits an infinite iterated central basic factorization of type
1 and we write w = α1a1α2a2 · · · · · · b2β2b1β1. We denote the iterated central
basic factorization of type 1 by I1CBF(w). Note that all the factors involved in this
factorization have content strictly contained in c(w).

Now, let w = α1a1γ1b1β1 be the central basic factorization of w. While γk 6= 1 or
γk−1 does not admit a degenerate central basic factorization, we consider the central
basic factorization of γk. The iterated central basic factorization of type 2 of w,
I2CBF(w), is defined by one of the following forms: w = α1a1α2a2 · · ·αnanβn · · · b2 ·
β2b1β1, in case CBF(γn−1) is degenerate, w = α1a1α2a2 · · ·αnanbnβn · · · b2β2b1β1,
in case γn = 1, or w = α1a1α2a2 · · · · · · b2β2 · b1β1, if the iteration is infinite. Note
that, also in this iterated basic factorization, all the factors involved have content
strictly contained in c(w).

Results from Almeida [3, 2] and Almeida and Weil [7] allow us to conclude that
we can iterate the central basic factorization of any of these two types and that the
infinite product, in fact, converges.
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Lemma 3.2 (Almeida and Weil [7]). Let S be a compact monoid. Then any two
accumulation points of every right infinite product in S are R-equivalent.

Lemma 3.3 (dual of the previous lemma). Let S be a compact monoid. Then any
two accumulation points of every left infinite product in S are L-equivalent.

Corollary 3.4. Let S be a pro-DA monoid. Given a right infinite product in
S and a left infinite product in S such that their accumulation points are in the
same regular J -class, then the product of any right accumulation point by any left
accumulation point is independent of the choice of these points.

Proof. It is enough to observe that the product of any two accumulation points of
each of the two infinite products is in the regular H-class R ∩ L which is trivial,
where R is the regular R-class that contains all the accumulation points of the right
infinite product and L is the regular L-class that contains all the accumulation
points of the left infinite product. �

We denote by
−→∏

n
k=1uk the product u1u2 · · ·un and by

←−∏
n
k=1vk the product

vn · · · v2v1. Given a pro-DA monoid S and sequences (uk)k≥1, (vk)k≥1 ∈ SN in the
conditions of the previous corollary, we denote by

−→∏
k≥1uk ·

←−∏
k≥1vk the product

of an accumulation point of the sequence (
−→∏

n
k=1uk)n by an accumulation point of

the sequence (
←−∏

n
k=1vk)n, when n goes to infinity.

Therefore, given w ∈ ΩADA\{1}, the iterated central basic factorization of w is
of one of the following forms:

w =
−→∏

n
k=1(αkak) · γn ·

←−∏
n
k=1(bkβk)

if it is of type 1 and it is finite and of the standard form or of the overlapped form,
or

w =
−→∏

n
k=1(αkak) ·

←−∏
n
k=1(bkβk)

if is of type 2 and it is finite and CBF(γn−1) is of the standard form or of the
overlapped form, or

w =
−→∏

n
k=1(αkak) · βn ·

←−∏
n−1
k=1 (bkβk)

if is of type 1 or 2 and it is finite and degenerate, or

w =
−→∏

k≥1(αkak) ·
←−∏

k≥1(bkβk)

if the iteration is infinite (and of any type). In fact, the last equality is valid as we
see from Lemma 3.9 or from Lemma 3.11, depending on the type of the iterated
factorization. We recall some results that we use to prove these lemmas.

Lemma 3.5 (cf. [2, Lemma 8.1.4]). Let S ∈ DS and let e ∈ E(S) and u ∈ S such
that u ≥J e. Then euReLue.

Corollary 3.6. Let S ∈ DA and let e, f ∈ E(S) and u ∈ S be such that u ≥J eJ f .
Then euf = ef .

Corollary 3.7 (cf. [2, Theorem 8.1.7]). Let S be a pro-DA semigroup and let
r, s, t ∈ S be such that c(s) ⊆ c(r) = c(t). Then rωstω = rωtω.
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Proposition 3.8 (cf. [2, Theorem 8.1.10]). Given w ∈ ΩADA, then w is idempotent
if and only if [w

u ] ∈ {0,∞}, for any u ∈ A+, where [w
u ] is the supremum of the

integers r such that ur is a subword of w.

We are now ready to prove the convergence of the infinite product in the iterated
central basic factorization of type 1 of w, as stated in the following lemma:

Lemma 3.9. Given w ∈ ΩADA\{1}, if w has an infinite iterated central basic
factorization of type 1, then w =

−→∏
k≥1(αkak) · ←−∏k≥1(bkβk).

Proof. The successive iterations of the central basic factorization of type 1 of w are
w =

−→∏
n
k=1(αkak) ·γn ·

←−∏
n
k=1(bkβk), for all n. By compactness, there exists a subse-

quence (
−→∏

m
k=1(αkak) , γm ,

←−∏
m
k=1(bkβk))m∈M that converges to some (α, γ, β). By

Proposition 3.8, α and β are idempotents, since c(αkak) = c(α) and c(bkβk) = c(β),
for all k, and also αJ β, by [2, Theorem 8.1.7], since they have the same content. It
follows, by Corollaries 3.6 and 3.4, that w = αγβ = αβ =

−→∏
k≥1(αkak)·←−∏k≥1(bkβk),

since c(γ) ⊆ c(α) = c(β). �

To show that the infinite product in the iterated central basic factorization of
type 2 of w converges we need to beware of the fact that the content of the factors
αkak and bkβk could decrease. In fact, the following lemma shows that the sequence
of these contents stabilizes.

Lemma 3.10. Let w ∈ ΩADA\{1} be such that the iterated central basic factoriza-
tion of type 2 of w is infinite, I2CBF(w) = α1a1α2a2 · · · · · · b2β2b1β1. Then there
exists N ∈ N such that, if i ≥ N , c(αiai) and c(biβi) are constant and equal, for all
i. Moreover, the pseudowords wi = αiaiαi+1ai+1 · · · · · · bi+1βi+1biβi, with i ≥ N ,
have a standard central basic factorization.

Proof. We consider the sequence (wn = γn−1 = αnan · · · · · · bnβn)n≥1 of elements
of ΩADA\{1}. We have c(w1) = c(w) and c(wj) ⊆ c(wi), if i < j. Since I2CBF(w)
is infinite and A is a finite alphabet, it follows that, from a certain point on, the
contents c(wi) must stabilize. Let N be a integer such that, if i, j ≥ N , then
c(wi) = c(wj). We recall that, if the central basic factorization of wi, CBF(wi) =
αiaiγibiβi, is of the overlapped form, then ai /∈ c(γibiβi) and bi /∈ c(αiaiγi) and,
therefore, c(γi = wi+1) ( c(wi). On the other hand, if the central basic factorization
of wi is degenerate, then I2CBF(wi) is finite and, therefore, I2CBF(w) is also finite,
which contradicts the hypothesis. So, if i ≥ N , then CBF(wi) is standard. By
definition of standard central basic factorization and by the above, it follows that,
if i ≥ N , then c(αiai) = c(biβi) = c(wN ).

Finally, we note that, if i < N , then the central basic factorization of wi could
be of the standard or of the overlapped form. �

Lemma 3.11. Given w ∈ ΩADA\{1}, if w has an infinite iterated central basic
factorization of type 2, then w =

−→∏
k≥1(αkak) · ←−∏k≥1(bkβk).

Proof. Let I2CBF(w) = α1a1α2a2 · · · · · · b2β2b1β1, let N be an integer satisfying the
condition of Lemma 3.10 and let wN = αNaNαN+1aN+1 · · · · · · bN+1βN+1bNβN .
Note that, by Lemma 3.10, c(αkak) = c(wN ) = c(bkβk), for all k ≥ N . So, the
iterated central basic factorization of type 2 of wN coincides with the iterated
central basic factorization of type 1 of wN . Applying Lemma 3.9 to this iterated
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factorization, it follows that wN =
−→∏

k≥N (αkak) ·←−∏k≥N (bkβk) and, therefore, w =−→∏
k≥1(αkak) · ←−∏k≥1(bkβk). �

Example 3.12. The iterated central basic factorizations of w = aωbωc2(ab)ωcabcω

of type 1 and of type 2 are, respectively:

I1CBF(w) = aωbω · c · ca · b · (ab)ω · a · bc · a · bcω

and I2CBF(w) = aωbω · c · ca · b · a · b · a · b · · · · · · a · b · a · b · a · bc · a · bcω.

Note that I1CBF(w) is finite, standard and of length 2 while I2CBF(w) is infinite.

The next step in our factorizations consists in applying successively the corre-
sponding factorization to each factor αi, βi and γn, the latter only in the case of a
finite iterated central basic factorization of type 1. We observe, by Proposition 3.13,
that this process is finite. For that purpose, we define two operations in ΩADA, op1

and op2, as follows. We start with op1:

(i) Let u = a1 · · · anbn · · · b1 ∈ A+ and α1, . . . , αn, γn, βn, . . . , β1 ∈ ΩADA be
such that, for each i < n, ai /∈ c(αi), bi /∈ c(βi), αiai and biβi have the same
content as the product α1a1 · · ·αnanγnbnβn · · · b1β1 and, for i = n, either
an, bn, αnan, bnβn satisfy the same conditions, or an /∈ c(γn)∪{bn}∪c(βn),
bn /∈ c(αn)∪{an}∪c(γn), and αnanγnbn and anγnbnβn have the same con-
tent as α1a1 · · ·αnanγnbnβn · · · b1β1. We define op1

u(α1, . . . , αn, γn, βn, . . . , β1) =
α1a1 · · ·αnanγnbnβn · · · b1β1.

(ii) Let u = a1 · · ·anbn−1 · · · b1 ∈ A+ and α1, . . . , αn, βn, . . . , β1 ∈ ΩADA be
such that, for all i, ai /∈ c(αi), bi /∈ c(βi), an /∈ c(βn) and αiai, biβi and
anβn have the same content as the product α1a1 · · ·αnanβn · · · b1β1. We
define op1

u(α1, . . . , αn, βn, . . . , β1) = α1a1 · · ·αnanβn · · · b1β1.
(iii) Let u =

−→∏
i≥1ai ·

←−∏
i≥1bi ∈ Aω+ω∗

and α1, α2, . . . , β1, β2, . . . ∈ ΩADA
be such that, for all i, ai /∈ c(αi), bi /∈ c(βi) and αiai and biβi have
the same content as the product

−→∏
k≥1(αkak) · ←−∏k≥1(bkβk). We define

op1
u(α1, α2, . . . , . . . , β2, β1) =

−→∏
i≥1(αiai) ·

←−∏
i≥1(biβi).

Similarly, we define op2, but now assuming that the contents could decrease:

(i) Let u = a1 · · · anbn · · · b1 ∈ A+ and α1, . . . , αn, βn, . . . , β1 ∈ ΩADA be such
that, for each i < n, ai /∈ c(αi), bi /∈ c(βi), αiai and biβi have the same
content as the product αiai · · ·αnanbnβn · · · biβi and, for i = n, either an /∈
c(αn), bn /∈ c(βn), and αnan and bnβn have the same content as αnanbnβn,
or an /∈ {bn} ∪ c(βn), bn /∈ c(αn) ∪ {an} and αnanbn and anbnβn have
the same content as αnanbnβn. We define op2

u(α1, . . . , αn, βn, . . . , β1) =
α1a1 · · ·αnanbnβn · · · b1β1.

(ii) Let u = a1 · · ·anbn−1 · · · b1 ∈ A+ and α1, . . . , αn, βn, . . . , β1 ∈ ΩADA be
such that, for all i, ai /∈ c(αi), bi /∈ c(βi), an /∈ c(βn), and αiai and biβi

have the same content as the product αiai · · ·αnanβn · · · biβi. We define
op2

u(α1, . . . , αn, βn, . . . , β1) = α1a1 · · ·αnanβn · · · b1β1.
(iii) Let u =

−→∏
i≥1ai ·

←−∏
i≥1bi ∈ Aω+ω∗

and α1, α2, . . . , β1, β2, . . . ∈ ΩADA
be such that, for all i, ai /∈ c(αi), bi /∈ c(βi) and αiai and biβi have
the same content as the product

−→∏
k≥i(αkak) · ←−∏k≥i(bkβk). We define

op2
u(α1, α2, . . . , . . . , β2, β1) =

−→∏
i≥1(αiai) ·

←−∏
i≥1(biβi).
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Proposition 3.13. Each element of ΩADA can be obtained from 1 by applying
successively one of the described operations a number of times that does not exceed
|A|.
Proof. Each w ∈ ΩADA\{1} has an iterated central basic factorization that involves
a finite (or infinite) product of letters ai and bi, which depends on the type of the
iterated factorization. As the content of each factor is strictly contained in c(w),
the result follows by induction on |c(w)|. �

We end this section by presenting some characterizations of the implicit opera-
tions on DA connected with its iterated central basic factorizations.

Let VwWi be the number of iterations until we obtain the iterated central basic
factorization of type i of w, with i ∈ {1, 2}. Note that VwWi ∈ N∪{∞}. We denote
by ‖w‖i the greatest integer n such that c(αnan) = c(bnβn) = c(w) and αnan and
bnβn are disjoint, in the iterated central basic factorization of type i of w. If this
maximum does not exist, we set ‖w‖i = ∞. If this condition does not occur for
any integer n, we set ‖w‖i = 0. Note that VwW1 = ‖w‖1 for the standard and
the overlapped case, and VwW1 − 1 = ‖w‖1 in the degenerate case. Moreover, we
have ‖w‖1 = ‖w‖2. The following statements are formulated for the iterated central
basic factorization of type 2, although we have similar results for the iterated central
basic factorization of type 1. We leave the details to the reader. From hereon, we
use the notation VwW and ‖w‖ instead of VwW2 and ‖w‖2, respectively.

Lemma 3.14. Let u, v ∈ ΩADA\{1}. If c(u) = c(v), then ‖uv‖ ≥ ‖u‖+ ‖v‖.
Proof. Let u = αu1au1 · · ·αumaumγumbumβum · · · bu1βu1 and v = αv1av1 · · ·αvn ·
avnγvnbvnβvn · · · bv1βv1 be, respectively, the m-iteration and the n-iteration of the
central basic factorization of u and v, with ‖u‖ = m and ‖v‖ = n, for m, n ∈ N.
Note that c(αuiaui) = c(buiβui) = c(u) = c(v) = c(αvj avj ) = c(bvj βvj ) for all i ≤ m
and j ≤ n. Since uv = αu1au1 · · ·aumγumbum · · · bu1βu1 ·αv1av1 · · ·avnγvnbvn · · · bv1βv1 ,
it is easy to see that ‖uv‖ ≥ m + n = ‖u‖ + ‖v‖. The case where ‖u‖ = ∞ or
‖v‖ =∞ is similar. �

We define the cumulative content of w ∈ ΩADA, and we denote it by ~c(w), to be
the empty set, if I2CBF(w) is finite, or the set of all letters a ∈ A such that there
exists N ∈ N such that, for all n ≥ N , a ∈ c(αnan) = c(bnβn), in the case where
I2CBF(w) is infinite.

Proposition 3.15. Let w ∈ ΩADA\{1}. The following conditions are equivalent:
(i) DA |= w2 = w;
(ii) ‖w‖ =∞;
(iii) c(w) = ~c(w).

Proof. (i)⇒ (ii): Suppose that w is idempotent. By Lemma 3.14, we have ‖w‖ =
‖w2‖ ≥ 2‖w‖ which implies ‖w‖ = ∞ or ‖w‖ = 0. Since ‖w2‖ > 0, for all
w ∈ ΩADA\{1}, then we have ‖w‖ =∞.

(ii) ⇒ (i): Suppose that ‖w‖ = ∞, i.e., w =
−→∏

k≥1(αkak) · ←−∏k≥1(bkβk) with
c(αkak) = c(bkβk) = c(w), for all k. By Proposition 3.8, it follows that w is an
idempotent of ΩADA. Let ϕ : ΩADA → S be a continuous homomorphism in a
finite monoid S ∈ DA. Then ϕ(w) is an idempotent. Thus DA |= w2 = w.

(ii) ⇔ (iii): It follows immediately from the definition of cumulative content
of w. �
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Lemma 3.16. Let w = xyz ∈ ΩADA with c(x), c(z) ( c(w). Then ‖w‖ ≤ ‖y‖+ 1.

Proof. If ‖y‖ =∞ or x and z are the empty word, the result is trivial. Otherwise,
we proceed by induction on (|c(y)|, ‖y‖) where the pairs are in the lexicographic
order. Suppose that |c(y)| = 1. Since c(x), c(z) ( c(w), there exists a letter in
c(y)∪ c(z) that does not belongs to c(x) and there exists a letter in c(x)∪ c(y) that
does not belong to c(z). By definition of central basic factorization, the following
cases can occur:

(i) CBF(w) = (α, a, γ, b, β) of the standard form: In this case, the letters a and
b belong to the content of y (otherwise, c(x) = c(w) or c(z) = c(w)). Since
|c(y)| = 1, we have a = b. Moreover, a /∈ c(x) = c(z) and c(γ) = {a} (
c(w), because γ is a factor of y and c(y) = {a}. It follows that ‖w‖ = 1.

(ii) CBF(w) = (α, a, γ, b, β) of the overlapped form: It follows, immediately,
that ‖w‖ = 0.

(iii) CBF(w) = (α, a, β) of the degenerate form: It follows, immediately, that
‖w‖ = 0.

Now, suppose that |c(y)| > 1. Let y1 be a prefix of yz and let y2 be a suffix of
xy such that y1 is minimal for c(xy1) = c(w) and y2 is minimal for c(y2z) = c(w).
Note that xy1 is one of the products αa or αaγb, according to the CBF(w) is of
the standard or of the degenerate form, in the first case, or of the overlapped form,
in the second case. We have the dual result for the factor y2z and, therefore, the
existence of these factors is justified. We also note that y1 and y2 are non-empty
words, by the hypothesis c(x), c(z) ( c(w). If y1 is not a prefix of y or y2 is not
a suffix of y, then the central basic factorization of w is overlapped and, therefore,
‖w‖ = 0. Suppose that y1 is a prefix of y and y2 is a suffix of y. Two cases can
occur: y = y1y

′y2, with y′ possibly empty, or y1 and y2 are not disjoint factors
of y. In the latter case, the central basic factorization of w is of the overlapped
form or of the degenerate form and, therefore, ‖w‖ = 0. Suppose that y = y1y

′y2,
with y′ possibly empty. If c(y′) ( c(w), then ‖w‖ = 1 and the result follows.
Suppose that c(y′) = c(w) and, therefore, ‖w‖ = ‖y′‖+ 1. We consider the central
basic factorization of y, CBF(y). The cases where CBF(y) are of the degenerate
or of the overlapped form are trivial, because ‖y′‖ = 0 (note that c(y′) = c(y)).
Suppose that CBF(y) = (α, a, γ, b, β) is of the standard form. Then there exist y′1
and y′2 such that αa = y1y

′
1, bβ = y′2y2 and y′1γy′2 = y′. We have c(γ) ( c(y) or

‖γ‖ = ‖y‖ − 1. If c(γ) ( c(y), then ‖y‖ = 1, ‖y′‖ ≤ 1 and ‖w‖ ≤ 2. Otherwise,
it follows that c(γ) = c(y) = c(y′) = c(w). If c(y′1), c(y′2) ( c(γ), by induction
hypothesis, it follows that ‖y′‖ ≤ ‖γ‖+ 1 = ‖y‖. Thus ‖w‖ ≤ ‖y‖+ 1. Otherwise,
c(y′1) = c(γ), c(y′2) = c(γ), or both occur simultaneously. Suppose, by symmetry,
that c(y′1) = c(γ) = c(w). Since αa = y1y

′
1 is the minimum prefix of y such that

c(αa) = c(w), it follows that y′1 is the minimum prefix of y′ such that c(y′1) = c(w).
It follows that ‖w‖ = ‖y′‖+ 1 ≤ ‖γ‖+ 2 = ‖y‖+ 1. �

Corollary 3.17. Let w = x1 · · ·xr ∈ ΩADA with c(xi) ( c(w), for all i. Then
‖w‖ < r

2 .

Proof. If r = 2, then ‖w‖ = 0, since the central basic factorization of w is of
the overlapped form. If r = 3, then, depending of the type of the central basic
factorization of w, we have ‖w‖ = 1 or ‖w‖ = 0. If r > 3, by the previous
lemma, we have ‖w‖ ≤ ‖x2 · · ·xr−1‖ + 1. It follows, by induction on r, that
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‖w‖ ≤ r−3
2 + 1 = r

2 − 1
2 , in the case where r is odd, or ‖w‖ ≤ r

2 − 1, in the case
where r is even. In any case, ‖w‖ < r

2 . �

4. Representation of implicit operations on DA

4.1. Two tree representations. We present two distinct representations of the
implicit operations on DA by trees. The first one comes from ideas used by Almeida
and Weil [7] for representing implicit operations over R. In the second one, we
extend to DA some techniques developed by Almeida and Zeitoun [8] to solve the
word problem for ω-terms over R. We end the subsection by giving a more compact
representation of the second tree representation using automata.

4.1.1. Representation by finite-height trees. Let A be a finite alphabet. We define
the set T1(A) to be a set of trees of finite height and with a number of vertices that
may be infinite. The set T1(A) consists of all trees with a root and satisfying the
following conditions:

(1) The vertices which are direct descendants of a vertex v, and that we call
the progeny of v, are ordered with order type n, with n finite and odd, or
with order type ω + ω∗.

(2) The direct descendants (or sons) of a vertex are ordered as follows: reading
from left to right, and also from right to left, they switch between a vertex
which we call node and a vertex which we call leaf and always starting,
whether we read from the left or from the right, by a node.

(3) A node has one and only one of the following properties: either it has
descendants, or it is labeled by 1 (in this case we call it a degenerate node).

(4) A leaf does not have descendants and it is labeled by a letter in A.
(5) The content of a leaf consists of its label; the content of a node is the set

of labels of its descendants leaves; the content of a degenerate node is ∅.
For each non-degenerate node v, let vi and fi be, respectively, the i-th node and
the i-th leaf, when we read from left to right, in the progeny of v and let v′i and f ′i
be, respectively, the i-th node and the i-th leaf, when we read from right to left, in
the progeny of v. Three distinct cases can occur, depending if the progeny of v has
order type ω + ω∗, 4m− 1 or 4m + 1:

(6) The case ω + ω∗: For all i < ω, we have c(fi) /∈ c(vi), c(f ′i) /∈ c(v′i) and
c(vi) ∪ c(fi) = c(f ′i) ∪ c(v′i) = c(v).

(7) The case 4m − 1: For all i ≤ m, we have c(fi) /∈ c(vi), c(f ′i) /∈ c(v′i) and
c(vi) ∪ c(fi) = c(f ′i) ∪ c(v′i) = c(v).

(8) The case 4m + 1: For all i < m, we have c(fi) /∈ c(vi), c(f ′i) /∈ c(v′i) and
c(vi) ∪ c(fi) = c(f ′i) ∪ c(v′i) = c(v). For f = fm or f = f ′m, then one and
only one of the following cases can occur:

(8-a) c(fm) /∈ c(vm), c(f ′m) /∈ c(v′m), c(vm) ∪ c(fm) = c(f ′m) ∪ c(v′m) = c(v)
and c(vm+1) 6= c(v).

(8-b) c(fm) /∈ c(vm+1)∪ c(f ′m)∪ c(v′m), c(f ′m) /∈ c(vm)∪ c(fm)∪ c(vm+1) and
c(vm)∪c(fm)∪c(vm+1)∪c(f ′m) = c(fm)∪c(vm+1)∪c(f ′m)∪c(v′m) = c(v).

Note that the contents of the successive descendants nodes of a branch strictly
decrease. It follows that the height of t ∈ T1(A) is at most |A|.

We define the mapping ̺ : T1(A) → ΩADA as follows. Let t ∈ T1(A). We
obtain ̺(t) as the ordered reading, from left to right, of the labels of the leaves
of t. Formally, we define ̺(t) by induction on the height of t. If t has height 0,
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then t is only a vertex, which is a degenerate node, and we set ̺(t) = 1. Suppose
that t has non-zero height. Let a1, . . . , an, bn, . . . , b1 be the labels of the leaves that
are direct descendants of the root (in case the number of leaves is finite and odd,
we have a1, . . . , an, bn−1, . . . , b1, and, in case that this number is infinite, we have
a1, a2, . . . . . . , b2, b1, respectively) and let t1, . . . , tn, tn+1, t

′
n, . . . , t′1 (respectively,

t1, . . . , tn, t′n, . . . , t′1 and t1, t2, . . . . . . , t′2, t
′
1 ) be the subtrees attached to each direct

descendant node of the root. Note that each subtree has height strictly lower than
the height of t. Let

̺(t) =
−→∏

n
i≥1(̺(ti)ai) · ̺(tn+1) ·

←−∏
n
i≥1(bi̺(t′i))

respectively

̺(t) =
−→∏

n
i≥1(̺(ti)ai) · ̺(t′n) ·

←−∏
n−1
i≥1 (bi̺(t′i))

or

̺(t) =
−→∏

i≥1(̺(ti)ai) ·
←−∏

i≥1(bi̺(t′i)).

Lemma 4.1. The factorization used in the definition of ̺(t) is the iterated central
basic factorization of type 1 defined in the previous section.

Proof. It suffices to note that, by properties (6), (7) and (8) from the definition of
tree t ∈ T1(A), a1 and b1 are, respectively, the first occurrence of the last appearing
letter when we read from left to right and from right to left. The other labels
a2, . . . , b2 in the progeny of the root satisfy the same condition in the subtree of t
which results from eliminating the first two and the last two branches that leave
from the root and so on, until the content of the subtree decreases, as in the
iteration of type 1 of the central basic factorization defined previously. Since, by
Proposition 3.1 this factorization is unique, it follows that the factorization of ̺(t)
is the iterated central basic factorization of type 1. �

Theorem 4.2. The mapping ̺ : T1(A)→ ΩADA is a bijection.

Proof. Let t and t̄ be distinct elements in T1(A). Let a1, a2, . . . , b2, b1 be the labels
of the leaves which are direct descendants of the root of t and let t1, t2, . . . , t

′
2,

t′1 be the subtrees attached to each direct descendant node of the root of t (as we
have defined previously). Similarly, we define ā1, ā2, . . . , b̄2, b̄1 and t̄1, t̄2, . . . , t̄

′
2, t̄

′
1

with respect to t̄. Let k be minimum with tk 6= t̄k, ak 6= āk, t′k 6= t̄′k or bk 6= b̄k and
consider the k-th iteration of the central basic factorization of ̺(t) and ̺(t̄):

̺(t) = ̺(t1)a1 · · · ̺(tk)akγkbk̺(t′k) · · · b1̺(t′1)

and
̺(t̄) = ̺(t̄1)ā1 · · · ̺(t̄k)ākγ̄k b̄k̺(t̄′k) · · · b̄1̺(t̄′1).

Note that, if we have 2n + 1 nodes in the progeny of the root, with k = n + 1, i.e.,
when t and t̄ differ in the subtree attached at the node in the central position, we
only iterate k− 1 times. Proceeding by induction on the height of t, it follows that
̺(tk) 6= ̺(t̄k), ak 6= āk, ̺(t′k) 6= ̺(t̄′k) or bk 6= b̄k. Since, by Proposition 3.1, the
central basic factorization is unique, we deduce that ̺(t) 6= ̺(t̄).

Let w ∈ ΩADA. To verify that the mapping is onto, we proceed by induction
on |c(w)|. If |c(w)| = 0, then w = 1 and w = ̺(t), where t is a tree with just one
vertex. If |c(w)| 6= 0, then w = op1

u(α1, α2, . . . , β2, β1), where u = a1a2 · · · b2b1 is an
element in A+ ∪Aω+ω∗

and α1, α2, . . . , β2, β1 satisfy the conditions used to define
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op1
u: for all i, c(w) = c(αiai), c(w) = c(biβi), ai /∈ c(αi) and bi /∈ c(βi). Moreover,

if |u| is finite and odd, then, since an is the letter at the central position, we also
have an /∈ c(βn). If |u| = n is finite and even and the central basic factorization
of w is of the overlapped form, we have that, for k = n, an /∈ c(γn) ∪ {bn} ∪ c(βn)
and bn /∈ c(αn)∪{an}∪ c(γn). It follows that c(αi) and c(βi) are strictly contained
in c(w), for all i. For all i, let ti and t′i be elements in T1(A) such that ̺(ti) = αi

and ̺(t′i) = βi. Then w = ̺(t), where t is the subtree of T1(A) whose leaves of
the progeny of the root are labeled with a1, a2, . . . , b2, b1 and whose nodes of this
progeny have the subtrees t1, t2, . . . , t

′
2, t

′
1 attached, respectively. �

Example 4.3. The tree in T1(A) which represents w = aωbωc2(ab)ωcabcω ∈ ΩADA
is the following:

aa

a b

b b

c b a a

c a b a

a b

b c b c

c c1 1

1

1 1

11 1

1 1 1 1

1 1 1 1 1

1 1

4.1.2. Representation by quasi-ternary trees. Let A be a finite alphabet. We define
a set T2(A) of quasi-ternary trees with labeled vertices, of which there may be
infinitely many, and whose heights of the central branches can be infinite too. The
set T2(A) consists of all trees with a root such that:

(i) The vertices are labeled with a pair of letters in A, or with a letter in A
(degenerate vertex), or with a letter ε /∈ A (final vertex).

(ii) The vertices which are labeled with a pair of letters have three direct de-
scendants. The degenerate vertices have only two direct descendants. The
final vertices do not have descendants.

We define recursively the content of a vertex v, c(v), to be the union of the
contents of their sons with the set of its labels. The left content of a vertex v, cl(v),
is the content of its left son. Dually, one may define the right content of a vertex
v, cr(v). In the case where the vertex is non-degenerate, we also define the central
content of a vertex v, cc(v), to be the content of its central son.

The set T2(A) also satisfies the following condition:
(iii) For each non-final vertex v one of the following cases occurs:

(iii-a) Non-degenerate case: Let (m1, m2) be the label of v. Then only one
of the following cases occurs: either

m1 /∈ cl(v), m2 /∈ cr(v) and cl(v) ∪ {m1} = {m2} ∪ cr(v) = c(v),

or

m1 /∈ cc(v) ∪ {m2} ∪ cr(v), m2 /∈ cl(v) ∪ {m1} ∪ cc(v) and

cl(v) ∪ {m1} ∪ cc(v) ∪ {m2} = {m1} ∪ cc(v) ∪ {m2} ∪ cr(v) = c(v).
(iii-b) Degenerate case: Let m be the label of v. We have m /∈ cl(v), m /∈

cr(v) and cl(v) ∪ {m} = {m} ∪ cr(v) = c(v).
Observe that the contents of the vertices of the successive descendants from the

right or from the left branches strictly decrease. We define the depth of t ∈ T2(A),
d(t), to be the maximum distance to the root of vertices which do not have as an
ancestor a vertex from a central branch. It follows that the depth of t is at most
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|A|, but it can be strictly smaller. As an example, d(a1 · · ·an) = 1, with ai 6= aj if
i 6= j.

We define the mapping ρ : T2(A)→ ΩADA recursively as follows. Let t ∈ T2(A).
If t has non-zero depth, i.e., t is just a vertex with label ε, we set ρ(t) = 1.
Otherwise, let v0, v1 and v2 (v0 and v2 in the degenerate case) be the vertices
descending directly from the root vε. For each vertex vi, with i ∈ {0, 1, 2}∗, let vi0,
vi1 and vi2 (vi0 and vi2 in the degenerate case) be the sons of vi. Let l(i,0) and l(i,2)
be the labels of vi (in the degenerate case, let l(i,0) be this label). We denote by ti0,
ti1 and ti2 the subtrees that begin at the sons vi0, vi1 and vi2, respectively. Then,
ρ(t) is described as follows:

ρ(t) = ρ(t0) · l(ε,0) · ρ(t10) · l(1,0) · · · · · · l(1,2) · ρ(t12) · l(ε,2) · ρ(t2)

if the central body of the tree is infinite. If it is finite, we have one of the following
cases:

ρ(t) = ρ(t0) · l(ε,0) · · · ρ(t1n−10) · l(1n−1,0) · l(1n−1,2) · ρ(t1n−12) · · · l(ε,2) · ρ(t2)

or
ρ(t) = ρ(t0) · l(ε,0) · · · ρ(t1n−10) · l(1n−1,0) · ρ(t1n−12) · · · l(ε,2) · ρ(t2).

Lemma 4.4. The factorization used in the definition of ρ(t) is the iterated central
basic factorization of type 2 defined above.

Proof. By Property (iii) from the tree’s definition, we know that l(ε,0) and l(ε,2)

are, respectively, the first occurrence of the last appearing letter when we read,
respectively, from left to right and from right to left. The other labels from this
factorization arise from the inductive process of applying the same factorization to
the subtree of t that has as a root the central son of the root of t. This process
ends when the root of the subtree that we are considering is degenerate or, if it
is not degenerate, it has as a central son a final vertex. By Proposition 3.1, this
factorization is unique and the iteration ends with the same condition of the iterated
central basic factorization of type 2 of ρ(t). Thus the factorizations are equal. �

Theorem 4.5. The mapping ρ : T2(A)→ ΩADA is a bijection.

Proof. Let t and t̄ be distinct elements of T2(A). Let k be minimum for l(1k,0) 6=
l̄(1k,0), l(1k,2) 6= l̄(1k,2), t1k0 6= t̄1k0 or t1k2 6= t̄1k2. Consider the k + 1-iteration of
the central basic factorization of ρ(t) and ρ(t̄):

ρ(t) = ρ(t0) · l(ε,0) · · · ρ(t1k0) · l(1k,0) · ρ(t1k+1) · l(1k,2) · ρ(t1k2) · · · l(ε,2) · ρ(t2)

and

ρ(t̄) = ρ(t̄0) · l̄(ε,0) · · · ρ(t̄1k0) · l̄(1k,0) · ρ(t̄1k+1) · l̄(1k,2) · ρ(t̄1k2) · · · l̄(ε,2) · ρ(t̄2).

Proceeding by induction on the depth of t and t̄, it follows that l(1k,0) 6= l̄(1k,0),
l(1k,2) 6= l̄(1k,2), ρ(t1k0) 6= ρ(t̄1k0) or ρ(t1k2) 6= ρ(t̄1k2). Since, by Proposition 3.1,
this factorization is unique, it follows that ρ(t) 6= ρ(t̄).

Let w ∈ ΩADA. To verify that ρ is onto, we proceed by induction on |c(w)|.
If |c(w)| = 0, then w = 1 and w = ρ(t), where t is the tree with just one vertex
labeled by ε. If |c(w)| 6= 0, then we consider the iterated central basic factorization
of w, w = α1a1α2a2 · · · · · · b2β2b1β1 (or one of the other previously described
cases). Note that c(αk) and c(βk) are strictly contained in c(w), for all k. For
all k, let t1k−10 and t1k−12 be elements in T2(A) such that ρ(t1k−10) = αk and
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ρ(t1k−12) = βk. Then w = ρ(t), where t is the tree in T2(A) whose central vertices
are labeled with (a1, b1), (a2, b2), etc., and with the subtrees t1k−10 and t1k−12, for
each k, respectively attached. �

Example 4.6. We have the following representation by a tree in T2(A) of the
pseudoword w = aωbωc2(ab)ωcabcω ∈ ΩADA:

 a,b  b,c b,a

 b,a

 b,a a  b

 b,a

 c,a

 b,b

 b,b

 b,b a,a

 a,a

 a,a

 c,c

 c,c

 c,c

b,c

ε ε

ε ε

ε

ε ε

ε ε

ε ε ε

ε

ε ε

ε ε

ε

ε

ε

ε

εεε

ε ε

ε ε

a b

c,a

ε

4.1.3. Representation by automata. It is sometimes convenient to compress the tree
representation described in 4.1.2. We do it by identifying vertices which have the
same attached subtrees. We begin with the definition of DA-automaton.

An A-labeled DA-automaton is a tuple A = (V,→, q, F, λ) where (V,→, q, F ) is
a non-empty deterministic automaton (which may be infinite) over the alphabet
B = {0, 1, 2} and λ : V → A× A ∪A ∪ {ε} is a total function. It also satisfies the
following conditions:

(A1) The set of final states is F = λ−1(ε).
(A2) There are no outgoing transitions from F .
(A3) Let v ∈ V \F . Then both v.0 and v.2 are defined. We also have v.1 defined

if and only if λ(v) ∈ A×A. Otherwise, λ(v) ∈ A.
(A4) Given v ∈ V \F with λ(v) = (λ1(v), λ2(v)) ∈ A × A we have one and only

one of the following cases:
(i) λ1(v.B∗) ∪ λ2(v.B∗) = [λ1(v.0B∗) ∪ λ2(v.0B∗)]

◦∪ λ1(v)
and λ1(v.B∗) ∪ λ2(v.B∗) = [λ1(v.2B∗) ∪ λ2(v.2B∗)]

◦∪ λ2(v),
(ii) λ1(v.B∗)∪λ2(v.B∗) = λ1(v)

◦∪[λ1(v.1B∗)∪λ2(v.1B∗)∪λ2(v)∪λ1(v.2B∗)∪
λ2(v.2B∗)]
and λ1(v.B∗)∪λ2(v.B∗) = [λ1(v.0B∗)∪λ2(v.0B∗)∪λ1(v)∪λ1(v.1B∗)∪
λ2(v.1B∗)]

◦∪ λ2(v),
where we consider, for each vertex v′ such that λ(v′) ∈ A, λ(v′) = λ1(v′).

(A5) Given v ∈ V \F with λ(v) = λ1(v) ∈ A we have

λ1(v.B∗) ∪ λ2(v.B∗) = [λ1(v.0B∗) ∪ λ2(v.0B∗)]
◦∪ λ1(v)

and λ1(v.B∗) ∪ λ2(v.B∗) = [λ1(v.2B∗) ∪ λ2(v.2B∗)]
◦∪ λ1(v)

where, again, we consider, for each vertex v′ such that λ(v′) ∈ A, λ(v′) =
λ1(v′).

The trees defined in 4.1.2 are DA-automata such that every state is reached from
the initial state by a unique path. We call these trees DA-trees.
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Given a DA-automaton A = (V,→, q, F, λ) and v ∈ V , the subautomaton of A
with initial state v is the DA-automaton Av = (V ∩ v.B∗,→, v, F ∩ v.B∗, λ|V ∩v.B∗).

Observe that, by conditions (A4) and (A5), if v.α is defined, then |α|0 + |α|2 ≤
|A|. Moreover, each time we follow a transition labeled 0 or 2, we end up in a
subautomaton labeled by an alphabet strictly contained in the previous one. It
follows that, if p0

a1−→ p1
a2−→ · · · an−−→ pn = p0 is a closed path of A, then ai = 1 for

all i = 1, ..., n.
We say that two DA-automata A = (Vi,→i, qi, Fi, λi) (i = 0, 1) are isomorphic

if there is a bijection ϕ : V0 → V1 such that, for all v ∈ V and for all a ∈ B,
ϕ(v.a) = ϕ(v).a and λ1(ϕ(v)) = λ0(v).

We say that two DA-automata A = (Vi,→i, qi, Fi, λi) (i = 0, 1) are k-equivalent
if

for all α ∈ B∗, |α| ≤ k =⇒ λ0(q0.α) = λ1(q1.α).
We say that two DA-automata are equivalent if they are k-equivalent for all k ≥ 0.
We write A0 ∼k A1 to denote the k-equivalence and we set ∼ =

⋂ ∼k. Note that
equivalent DA-trees are isomorphic, since, as we said above, each state is completely
determined by the unique path starting at the initial state and ending at this state.

Lemma 4.7. Any DA-automaton has a unique (up to isomorphism of DA-trees)
equivalent DA-tree.

Proof. Let A = (V,→, q, F, λ) be a DA-automaton. We define the DA-tree T =
(W,→, p, G, ν) as follows. Let W = {α ∈ B∗ | q.α is defined}, p = ε, ν(α) = λ(q.α)
and G = ν−1(ε). If q.α0 and q.α2 are defined, i.e., if λ(q.α) 6= ε, then we define
the transitions α

0−→ α0 and α
2−→ α2. Moreover, if q.α1 is also defined, which

corresponds to λ(q.α) ∈ A×A, then we have also the transition α
1−→ α1 of T . It is

easy to see that the properties (A1)-(A5) remain valid and the uniqueness of this
construction results from the fact that equivalent DA-trees are isomorphic. �

We call the unfolding of A the unique (up to isomorphism) DA-tree ~A equivalent
to the DA-automaton A.

Corollary 4.8. Let A and A′ be DA-automata. Then A ∼ A′ if and only if ~A = ~A′.
We define the value π(A) ∈ ΩADA of a DA-automaton A by π(A) = ρ( ~A). Given

a DA-automaton A = (V,→, q, F, λ) and v ∈ V , let [v] = π(Av).

Lemma 4.9. Let A = (V,→, q, F, λ) be a DA-automaton and v ∈ V \F . Then, the
central basic factorization of [v] is [v.0] ·λ1(v) · [v.1] ·λ2(v) · [v.2], if v.1 is defined, or
[v.0] ·λ1(v) · [v.2], otherwise. Thus, by uniqueness of the central basic factorization,
we have, for u, v ∈ V \F ,

[u] = [v] =⇒


λ1(u) = λ1(v)
λ2(u) = λ2(v)
[u.0] = [v.0]
[u.1] = [v.1]
[u.2] = [v.2]

respectively,

[u] = [v] =⇒


λ1(u) = λ1(v)
[u.0] = [v.0]
[u.2] = [v.2].
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Proof. It suffices to proceed by induction on c([v]) taking into account the definition
of central basic factorization. �

We call the wrapping of a DA-automaton A = (V,→, q, F, λ) the DA-automaton
[A] = ([V ],→, [q], [F ], ν) where:

(i) [V ] = {[v] | v ∈ V } ⊆ ΩADA;
(ii) [v].0 = [v.0], [v].1 = [v.1] and [v].2 = [v.2];
(iii) ν([v]) = λ(v).
This automaton is obtained from A by identifying states representing the same

pseudoword. For w ∈ ΩADA we define the wrapped DA-automaton of w to be
A(w) = [ρ−1(w)].

The value of a path p0
δ0−→ p1

δ1−→ · · · δn−→ pn+1 in a DA-automaton is the product∏n
i=0(δi, λ(pi)) ∈ (B × (A × A ∪ A))∗. The language L(v) ⊆ (B × (A × A ∪ A))∗

associated to the state v ∈ A is the set of values of all the paths starting at v
and ending at a final state. The language L(A) associated to A is the language
associated to its initial state. Finally, the language L(w) associated to w is L(w) =
L(A(w)).

Note that, if we consider the automaton obtained from A(w) by replacing the
label of each edge in A(w) by the pair whose first component is the label that
this edge has in A(w) and the second component is the label of the initial vertex
of the edge in A(w), then it is an automaton that recognizes L(w). We see this
replacement in Example 4.12.

Lemma 4.10. Let A1 and A2 be two DA-automata. We have L(A1) = L(A2) if
and only if ~A1 = ~A2.

Proof. It suffices to note that L(A) uniquely determines the maximal paths in A,
which in turn determines ~A. �
Proposition 4.11. Let v, w ∈ ΩADA. Then DA |= v = w if and only if L(v) =
L(w).

Proof. By Theorem 4.5, we have t(v) = t(w) if and only if DA |= v = w. The result
now follows from the previous lemma. �
Example 4.12. The wrapped DA-automaton of w = aωbωc2(ab)ωcabcω ∈ ΩADA
is presented in the following figure. Note that it is a finite automaton.

0

1

2

0ca3
1ca

4

2ca

1ab5
0ab

6

2ab

7

0ba8
1ba

9

2ba

1bc

0bc

10

2bc

0aa

2aa

1aa

0bb

2bb

1bb

0ca

1ca

2ca

1ba
11

0ba

12
2ba

0bc

1bc

2bc

0cc

2cc

1cc

0a2a

0b2b
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4.2. Representation by labeled orderings. We consider, in the set of linear or-
derings, the subalgebra generated by the ordinal 1 and by the following operations:

+ : (o1, o2) 7→ o1 + o2,

θ : (o1, o2, . . . , . . . , o
′
2, o

′
1) 7→ o1 + o2 + · · · · · ·+ o′2 + o′1.

We call an element of this subalgebra a ∗-linear ordering. Note that a ∗-linear
ordering has the following properties: it is countable since it is a countable sum
of countable orderings, it has a minimum element and a maximum element, any
element except the maximum has a successor and any element except the minimum
has a predecessor.

Given a ∗-linear ordering o, we consider a representation of o in the free algebra
generated by {1} and by the operations + and θ, 〈{1}; +, θ〉. We define the rank of
this representation to be the maximum number of nested operations θ. The rank
of o, r(o), is the minimum of the ranks of the representations of o.

Lemma 4.13. Given a ∗-linear ordering o, any closed interval in o is also a ∗-linear
ordering.

Proof. We proceed by induction on the rank of o. The case r(o) = 0 is trivial, since
it corresponds to the finite linear orderings, and the case r(o) = 1 is easy to show:
if o is a ∗-linear ordering such that r(o) = 1, then o = (ω + ω∗)m, with m finite,
and the closed intervals in o are of the form m, with m finite, or (ω + ω∗)m′, with
m′ ≤ m. In any case, they also are ∗-linear orderings. Suppose that the result is
verified for r(o) < n. Let o be a ∗-linear ordering such that r(o) = n > 1. Then
o = θ(o1, o2, . . . , o

′
2, o

′
1)m for some representation of o, where oi and o′i are ∗-linear

orderings such that r(oi) < n and r(o′i) < n, for all i, and m is finite. Let o′ be a
closed interval in o. Then one of the following cases can occur, for some integers j
and k:

(1) o′ ⊆ oj ;
(2) o′ ⊆ o′k;
(3) o′ ⊆ oj + oj+1 + · · ·+ ok−1 + ok and oj+1 + · · ·+ ok−1 ⊂ o′;
(4) o′ ⊆ o′j + o′j−1 + · · ·+ o′k+1 + o′k and o′j−1 + · · ·+ o′k+1 ⊂ o′;
(5) o′ ⊆ oj + oj+1 + · · · · · ·+ o′k+1 + o′k and oj+1 + · · · · · ·+ o′k+1 ⊂ o′;
(6) o′ ⊆ ō + θ(o1, o2, . . . , . . . , o

′
2, o

′
1)m

′ + ō′ and θ(o1, o2, . . . , . . . , o
′
2, o

′
1)m

′ ⊂ o,
with 0 < m′ < m, ō is of the form (2), (4) or (5) with k = 1, and ō′ is of
the form (1), (3) or (5) with j = 1.

We treat the case (5) in detail. The other cases are similar. In this case, we have
that oj ∩ o′ and o′k ∩ o′ are closed intervals in oj and o′k, respectively, and r(oj) < n
and r(o′k) < n. By induction hypothesis, we have that oj ∩ o′ and o′k ∩ o′ are
∗-linear orderings. It follows that o′ = θ(oj ∩ o′, oj+1, . . . , . . . , o

′
k+1, o

′
k ∩ o′) is a

∗-linear ordering. �
Given a finite alphabet A, let LO∗(A) be the set of ∗-labeled linear orderings in

A, where an element (o, l) ∈ LO∗(A) is such that o is a linear ordering in 〈{1}; +, θ〉
and l is a labeling l : o→ A.

Let o = (o, l) be a ∗-labeled linear ordering. A partition of o in two non-empty
intervals (o1,o2), where each element of o2 is greater than all elements of o1, is
called a Dedekind cut in o. We say that a Dedekind cut (o1,o2) is a gap in o if
the first interval does not have a maximum and the second interval does not have a
minimum. An ordering is complete if it does not have any gap. Given an incomplete
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ordering o = (o, l) ∈ LO∗(A), its completion is isomorphic to the set of Dedekind
cuts in o ordered by the relation (o1,o2) ≤ (o′1,o′2) if o1 ⊆ o′1. For details, see
Rosenstein [12].

Given a Dedekind cut (o1,o2) in o, we define the set of right cofinal letters of
o1, cr(o1) and the set of left cofinal letters of o2, cl(o2) to be the following:

cr(o1) = {a ∈ A | ∀p ∈ o1 ∃q ∈ o1 : p < q ∧ l(q) = a},
cl(o2) = {a ∈ A | ∀p ∈ o2 ∃q ∈ o2 : q < p ∧ l(q) = a}.

We say that a ∗-linear ordering o satisfies the cofinal property if, for every Dedekind
cut (o1,o2) in o, cr(o1) = cl(o2). We call this set the cofinal set of (o1,o2) and
we write c((o1,o2)) = cr(o1) = cl(o2).

Let o ∈ LO∗(A) be a labeled linear ordering satisfying the cofinal property. We
define the following labeling function of the set Do of Dedekind cuts of o:

l : Do → P(A)

(o1,o2) 7→
{ {a} if (o1,o2) is not a gap and l(maxo1) = a

c((o1,o2)) if (o1,o2) is a gap.

We say that o = (o, l) ∈ LO∗(A) is a reduced A-labeled ∗-linear ordering if it
satisfies the following conditions:

(i) o satisfies the cofinal property;
(ii) Given two distinct gaps in o with the same cofinal set, there exists a

Dedekind cut between them whose label is not contained in this cofinal
set.

Let rLO∗(A) be the set of all reduced A-labeled ∗-linear orderings. To each tree
t ∈ T1(A) we associate a ∗-labeled linear ordering µ(t) by ordering the set of the
leaves of t from left to right. Formally, the set of the leaves of t, F (t), is ordered
as follows: given two elements f and f ′, let vff ′ be the deepest node which is a
common ancestor of f and f ′, and vf and vf ′ the sons of vff ′ which are ancestors
of f and f ′, respectively (note that we can have vf = f or vf ′ = f ′). If vf < vf ′ in
the progeny of vff ′ , then we say that f < f ′. It is easy to verify that this defines a
linear ordering in F (t). Let o be the corresponding linear ordering and let l : o→ A
be the labeling function which maps each leaf to its label. We put µ(t) = (o, l).

Proposition 4.14. For each t ∈ T1(A), µ(t) ∈ rLO∗(A).

Proof. We proceed by induction on the height of t, h(t), where the case h(t) = 0 is
trivial. Recall that the order type of each progeny is m, with m finite, or ω + ω∗.
Let t be a tree with non-zero height and let t1, t2, . . . , . . . , t

′
2, t

′
1 be the subtrees

attached to the nodes which are sons of the root of t. By induction hypothesis,
o(ti), o(t′i) ∈ 〈{1}; +, θ〉 for all i. It follows that o(t) = o(t1) + 1 + o(t2) + 1 +
· · · · · ·+ 1 + o(t′2) + 1 + o(t′1) is an element of the subalgebra, since it is a finite or
infinite sum of elements of the subalgebra (in the first case, we apply a sufficient
number of times the operator + and, in the second case, we apply the operator θ).
Since the height of t ∈ T1(A) is at most |A|, it follows that µ(t) ∈ LO∗(A).

Let (o1,o2) be a Dedekind cut in µ(t). If this cut is not a gap in µ(t), then
cr(o1) = cl(o2) = ∅. Suppose that it is a gap in µ(t). This corresponds to dividing
the tree in the middle of the progeny of a node v with order ω+ω∗. By Property (4)
from the definition of tree in T1(A), we have that c(vi)∪c(fi) = c(v′i)∪c(f ′i) = c(v),
for all i, where vi and fi are, respectively, the i-th node and the i-th leaf of the
progeny of v, when we count from left to right, and v′i and f ′i are, respectively,
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the i-th node and the i-th leaf of the progeny of v, when we count from right to
left. Recall that the content of a node is the set of the labels of the descendants
leaves. It follows that cr(o1) = cl(o2) = c(v) and, therefore, µ(t) satisfies the
cofinal property.

Now, we show that condition (ii) holds. Let (o1,o2) < (o′1,o′2) be two distinct
gaps in o with the same cofinal set and let v and v′ be the nodes whose progenies
are split in two by the intervals of the gaps (o1,o2) and (o′1,o′2), respectively. Let
v̄ and v̄′ be the the deepest ancestor of v and v′, respectively, such that v̄ and v̄′

are in the same progeny. Note that v̄ < v̄′ and that c((o1,o2)) = c((o′1,o′2)) ⊆ c(v̄)
and c((o1,o2)) = c((o′1,o′2)) ⊆ c(v̄′). Suppose that this progeny has order ω + ω∗.
If v̄ is in a position of ω, let f be the leaf that succeeds v̄ in the progeny and, in
case v̄ is in a position of ω∗, and so is v̄′, let f be the leaf that precedes v̄′ in the
progeny. Then, by Property (6) from the definition of tree, we have c(f) /∈ c(v̄) or
c(f) /∈ c(v̄′). We consider the Dedekind cut in o and between the two gaps, (o′′1,o′′2),
such that max o′′1 = f . It follows that c((o′′1,o′′2)) 6⊆ c((o1,o2)) = c((o′1,o′2)). The
other cases hold similarly. Thus µ(t) is reduced. �

We denote by
−→∑

n
k=1ok the sum o1 + o2 + · · · + on and by

←−∑
n
k=1ok the sum

on + · · ·+ o2 + o1.

Lemma 4.15. Let t ∈ T1(A) be a tree with non-zero height, let a1, a2, . . . , . . . , b2, b1

be the labels of the leaves that are sons of the root and let t1, t2, . . . , . . . , t
′
2, t

′
1 be the

subtrees of t attached to each son of the root. If µ(tm) = (om, lm) and µ(t′m) =
(o′m, l′m), for all m, then µ(t) = (o, l) where o is a ∗-linear ordering of one of the
following forms:

(1)
−→∑

n≥1(on + 1) +
←−∑

n≥1(1 + o′n), if the leaf sons have order ω + ω∗;
(2)
−→∑

n
i=1(oi + 1) + on+1 +

←−∑
n
i=1(1 + o′i), if the number of leaf sons is even;

(3)
−→∑

n
i=1(oi + 1) + o′n +

←−∑n−1
i=1 (1 + o′i), if the number of leaf sons is odd;

and l is the labeling l : o→ A satisfying the following conditions:

(i) l
(−→∑m−1

i=1 (oi + 1) + γ
)

= lm(γ), if γ is an initial segment of om,

(ii) l
(−→∑

i≥1(oi + 1) +
←−∑

i>m(1 + o′i) + 1 + γ
)

= l′m(γ), if γ is an initial seg-
ment of o′m,

(iii) l
(−→∑

m
i=1(oi + 1)

)
= am,

(iv) l
(−→∑

i≥1(oi + 1) +
←−∑

i>m(1 + o′i) + 1
)

= bm.

Proof. The verification follows directly by induction on the height of t. �

To establish that µ is a bijection, we construct and iterate a central basic par-
tition of a non-zero reduced ∗-labeled linear ordering. We start with the following
lemma.

Lemma 4.16. Let o = (o, l) ∈ rLO∗(A). Then, for each a ∈ c(o), there exist the
smallest position of o labeled a and the largest position of o labeled a.

Proof. For each a ∈ c(o), let Da = {(o1,o2) ∈ Do | a ∈ l((o1,o2))}. This subset
is non-empty and bounded below, so, since Do is a complete ordering, it has an
infimum, (o1,o2). Suppose that it is a gap in o. By definition of infimum, for
every Dedekind cut (o′1,o′2) > (o1,o2), there exists a Dedekind cut (o′′1,o′′2) such
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that (o1,o2) ≤ (o′′1,o′′2) < (o′1,o′2) and a ∈ l((o′′1,o′′2)). But this is equivalent to
a ∈ c((o1,o2)) and, therefore, there exists a sequence of Dedekind cuts less than
(o1,o2) whose label contains a, which is contrary to the hypothesis of (o1,o2) be
an infimum. Thus (o1,o2) is not a gap and, therefore, it is minimum for, otherwise,
its successor will be also a lower bound of Da. Since (o1,o2) is not a gap, o1 has a
maximum and o2 has a minimum. The maximum of o1 is the smallest position of o
labeled a. Similarly, we prove the existence of the largest position of o labeled a. �

Let o = (o, l) ∈ rLO∗(A). For each letter a ∈ A, let po
a be the smallest position

of o such that l(p) = a, let p̄o
a be the largest position of o such that l(p) = a and

let po = max{po
a | a ∈ A} and p̄o = min{p̄o

a | a ∈ A} (if there is no position labeled
by a, we set po

a = min o and p̄o
a = max o). Note that, since A is finite, there exist

po and p̄o. Three cases can occur: po < p̄o, po > p̄o or po = p̄o. We begin with
the case po < p̄o. Let α1 = [min o, po[, γ1 = ]po, p̄o[ and β1 = ]p̄o, max o], which
are also ∗-linear orderings by Lemma 4.13, since they are closed intervals in o. We
have o = α1 + 1 + γ1 + 1 + β1. We call this equality the central basic partition of
(o, l). Let γ0 = o, p1 = po and p̄1 = p̄o. While pi < p̄i and c(γi) = c(o), let pi+1 =
max{po

a ∈ γi | a ∈ A}, p̄i+1 = min{p̄o
a ∈ γi | a ∈ A} and αi+1 = [min γi, pi+1[,

γi+1 = ]pi+1, p̄i+1[ and βi+1 = ]p̄i+1, max γi] be the ∗-linear orderings such that
γi = αi+1 +1+γi+1 +1+βi+1. If, for any k, c(γk+1) 6= c(o), or pk > p̄k, or pk = p̄k,
then we put, respectively:

(i) γk = αk+1 + 1 + γk+1 + 1 + βk+1, where αk+1 = [min γk, pk+1[, γk+1 =
]pk+1, p̄k+1[ and βk+1 = ]p̄k+1, max γk],

(ii) γk = αk+1 + 1 + γk+1 + 1 + βk+1, where αk+1 = [min γk, p̄k+1[, γk+1 =
]p̄k+1, pk+1[, and βk+1 = ]pk+1, max γk],

(iii) γk = αk+1 + 1 + βk+1 where αk+1 = [min γk, pk[ = [min γk, p̄k[ and βk+1 =
]pk, max γk] = ]p̄k, max γk].

In these cases, we stop the iteration and we obtain one of the following equalities:

o =
−→∑

k+1
i=1 (αi + 1) + γk+1 +

←−∑
k+1
i=1 (1 + βi),

if c(γk+1) 6= c(o) or pk > p̄k, or

o =
−→∑

k+1
i=1 (αi + 1) + βk+1 +

←−∑
k
i=1(1 + βi),

if pk = p̄k. Let l0 = l. For each i, let l′i be the restriction of li−1 to the initial segment
αi of γi−1, l′′i be the labeling of βi defined by l′′i (δ) = li−1(αi+1+γi+1+δ), where δ is
an initial segment of βi, and li be the labeling of γi defined by li(δ) = li−1(αi+1+δ),
where δ is an initial segment of γi. For each m ≥ 1, we obtain

(i) l′m(δ) = l
(−→∑m−1

i=1 (αi + 1) + δ
)
, if δ is an initial segment of αm,

(ii) lm(δ) = l
(−→∑

m
i=1(αi + 1) + δ

)
, if δ is an initial segment of γm,

(iii) l′′m(δ) = l
(−→∑

m
i=1(αi + 1) + γm + 1 + δ

)
, if δ is an initial segment of βm.

This defines the iterated central basic partition of o.
In case po

i < p̄o
i and c(γi) = c(o), for all i, we iterate indefinitely the partition

defined above and we obtain o =
−→∑

i≥1(αi + 1) +
←−∑

i≥1(1 + βi) as justified by the
following lemma.
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Lemma 4.17. Let o = (o, l) ∈ rLO∗(A). If o has an infinite iterated central basic
partition, then o =

−→∑
i≥1(αi + 1) +

←−∑
i≥1(1 + βi).

Proof. Let P = {po
i : i ≥ 1} and P̄ = {p̄o

i : i ≥ 1}. These sets are infinite, P is
bounded above and it does not have a maximum element and P̄ is bounded below
and it does not have a minimum element. We consider the subsets of Do that follow:

D = {(o1,o2) ∈ Do | ∃po
i ∈ P, po

i = max o1},
D̄ = {(o1,o2) ∈ Do | ∃p̄o

i ∈ P̄ , p̄o
i = max o1}.

Let (o1,o2) = supD and (o′1,o′2) = inf D̄, which exist, since Do is a complete
ordering, D is bounded above and D̄ is bounded below. Note that these Dedekind
cuts are gaps in o, since D does not have a maximum and D̄ does not have a
minimum. Moreover, by definition of iterated central basic partition of an ordering
o and by definition of cofinal set of a gap in o, we have c((o1,o2)) = c((o′1,o′2)) =
c(o). If these gaps are distinct, then, by definition of reduced ∗-labeled linear
ordering, there exists a Dedekind cut between them whose label does not belong
to c(o), which is a contradiction. It follows that (o1,o2) = (o′1,o′2) and, therefore,
o =
−→∑

i≥1(αi + 1) +
←−∑

i≥1(1 + βi). �

Let ν : rLO∗(A) → T1(A) be the mapping defined as follows. If o = 0, then
ν(o, l) is the tree which consists of a unique degenerate node. If o 6= 0, then we
consider the iterated central basic partition of (o, l), o =

−→∑
i≥1(αi+1)+

←−∑
i≥1(1+βi).

Note that c(αi, l
′
i) and c(βi, l

′′
i ) are strictly contained in c(o, l), for all i. We defined

the tree ν(o, l) by induction on the content of (o, l): to each element of the sum
o =

−→∑
i≥1(αi + 1) +

←−∑
i≥1(1 + βi) corresponds a son of the root. The vertex

which corresponds to an element αi or βi, for all i (and also to γk, if it exists) is
a node whose content is the image of the labelings l′i and l′′i , respectively (if γk

exists, then the content of the corresponding vertex is the image of lk). We note
that, if one of those orderings is 0, the corresponding vertex is a degenerate node.
To the rest of the elements of the sum we associate a leaf labeled, respectively,
l(α1 + 1), l(α1 + 1 + α2 + 1), . . . , l(α1 + 1 + α2 + 1 + · · · · · · + 1 + β3 + 1),
l(α1 + 1 + α2 + 1 + · · · · · · + 1 + β3 + 1 + β2 + 1). We attach to the vertices
which do not correspond to a degenerate node the subtrees ν(α1, l

′
1), ν(α2, l

′
2), . . . ,

. . . , ν(β2, l
′′
2 ), ν(β1, l

′′
1 ). We notice that the trees constructed in this manner are,

effectively, in T1(A). In fact, we can verified immediately the properties (1)-(5)
from the definition of tree in T1(A) in the construction made. The properties (6)-
(8) follow by the definition of iterated central basic factorization of (o, l) and the
fact that the orderings involved are reduced.

Theorem 4.18. The mapping µ : T1(A)→ rLO∗(A) is a bijection.

Proof. Let t ∈ T (A). If h(t) = 0, then ν(µ(t)) = t by definition. Suppose that
t has non-zero height and let µ(t) = (o, l). By Lemma 4.15 and by definition of
iterated central basic partition of a reduced ∗-labeled linear ordering, we have that
o =
−→∑

n≥1(on + 1) +
←−∑

n≥1(1 + o′n) is exactly the iterated central basic partition
of (o, l) and, therefore, ν(µ(t)) = t. Now, let (o, l) ∈ rLO∗(A). The case o = 0
follows by definition. Suppose that o 6= 0 and let o =

−→∑
i≥1(αi + 1) +

←−∑
i≥1(1 + βi)

be the iterated central basic partition of o = (o, l). For each i, let lαi : αi → A
be defined by lαi(δ) = l′i(δ), where δ is an initial segment of αi, and lβi : βi → A



22 ANA MOURA

is defined by lβi(δ) = l′′i (δ), where δ is an initial segment of βi. Consider the
tree whose leaf sons of the root are labeled l(α1 + 1), l(α1 + 1 + α2 + 1), . . . ,
l(α1+1+α2+1+ · · · · · ·+1+β3+1), l(α1+1+α2+1+ · · · · · ·+1+β3+1+β2+1)
and whose subtrees attached to the nodes of the progeny of the root are ν(α1, lα1),
ν(α2, lα2), . . . , ν(β2, lβ2), ν(β1, lβ1). It follows, by Lemma 4.15, that µ(ν(o, l)) =
(o, l). �

We finish by showing the relation between the representations of implicit opera-
tions by finite-height trees and by labeled orderings. It will be useful to relate also
these representations with the representation by quasi-ternary trees. In fact, we
can construct a bijection ξ : T2(A) → T1(A) recursively as follows. Let t ∈ T2(A)
be such that ρ(t) = ρ(t0) · l(ε,0) · ρ(t10) · l(1,0) · · · · · · l(1,2) · ρ(t12) · l(ε,2) · ρ(t2), where
ρ : T2(A)→ ΩADA is the bijection defined in 4.1.2. Let i be maximum for c(v1i) =
c(ρ(t)), where v1i is the root of the subtree t1i . Then the progeny of the root of
ξ(t) consists of the leaves labeled by l(ǫ,0), l(1,0), . . . , l(1i,0), l(1i,2), . . . , l(1,2), l(ǫ,0)
and the trees ρ(t0), ρ(t10), . . . , ρ(t1i0), ρ(t1i+1), ρ(t1i2), . . . , ρ(t12), ρ(t2) at-
tached to the nodes. Proceeding recursively, and since A is finite, we obtain the
tree ξ(t) ∈ T1(A). We leave the details to the reader.
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THE WORD PROBLEM FOR ω-TERMS OVER DA

A. MOURA

Abstract. In this paper, we solve the word problem for ω-terms over DA. We
extend to DA the ideas used by Almeida and Zeitoun to solve the analogous
problem for the pseudovariety R applying also a representation by automata of
implicit operations on DA, which was recently obtained by the author. Consid-
ering certain types of factors of an implicit operation on DA, we can prove that
a pseudoword on DA is an ω-term if and only if the associated minimal DA-
automaton is finite. Finally, we complete the result by effectively computing
in polynomial time the minimal DA-automaton associated to an ω-term.

1. Introduction

The pseudovariety DA, the class of finite monoids whose regular D-classes are
aperiodic semigroups, has been the subject of recent studies due to its various ap-
plications. It is known that languages whose syntactic monoids lie in DA have
important algebraic, combinatorial, automata-theoretical and logical characteriza-
tions that enable us to solve problems in computational and complexity theory (see
Tesson and Thérien [13]).

On the other hand, word problems have long played an important role in various
branches of Mathematics. In this paper, we solve the word problem for ω-terms
over DA, which consists of deciding if two ω-terms are equal over all elements of
this pseudovariety. Almeida and Zeitoun [5, 4] solved the analogous problem for
the pseudovariety R. Based on this work, we characterize ω-terms over DA by the
finiteness of certain types of sets of factors and by the finiteness of the associated
minimal DA-automaton. We also construct in polynomial time this minimal DA-
automaton.

In [11], we exhibited three representations of implicit operations over DA: by
means of labeled trees of finite height, by means of quasi-ternary labeled trees, and
by means of labeled linear orderings. The paper has also an improvement of the
representation by quasi-ternary labeled trees, which may be infinite, consisting of
wrapping the DA-tree of an implicit operation. We obtain a representation by means
of DA-automata and we prove here that an ω-term has a finite representation by
the minimal DA-automaton. Since this paper depends on several definitions and
results from [11], the reader should refer to that paper as needed.

The paper is organized as follows. In Section 2, we introduce some notions and
notation about implicit signatures, concluding the corresponding section from [11].
We also recall the notion of central basic factorization of an implicit operation
on DA and the representation of implicit operations on DA by automata. Based
on Almeida and Zeitoun [5], we construct in Section 3 certain types of factors of
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an implicit operation. This allows us to characterize an ω-term on DA by the
finiteness of these sets of factors and by the finiteness of the associated minimal
DA-automaton, which is done in Section 4. Finally, in Section 5 we exhibit an
algorithm to compute a finite DA-automaton associated to an ω-term and we prove
that the minimal DA-automaton associated to an ω-term can be constructed in
polynomial time.

2. Preliminaries

We complete the introduction of notions and notation given in the corresponding
section of [11]. For further information on the basic background see, for instance, [1,
3].

In this paper, ΩAV denotes the free pro-V monoid on A. The natural interpreta-
tion of u ∈ ΩAV in a pro-V monoid S is the mapping uS : SA → S which associates
to each function µ : A → S the element µ̂(u) ∈ S. For u ∈ ΩAV, the sequence
(un!−1)n converges and we denote the limit by uω−1. Similarly, uω denotes the limit
of the sequence (un!)n, which is the unique idempotent in the closed subsemigroup
generated by u. The elements of ΩAV are called implicit operations over V or pseu-
dowords over V. Usually, the first name is used when these elements are viewed,
via their natural interpretation, as operations on finite semigroups, and the second
name is used when the elements are viewed as combinatorial entities generalizing
finite words. Recall that, if ι : A → ΩAV is the natural generating function, then
the submonoid generated by ι(A) is a dense submonoid of ΩAV.

An implicit signature is a set of implicit operations containing the monoid mul-
tiplication, · . The canonical signature κ = { · , ω−1} consists of the monoid
multiplication and the unary (ω−1)-power. A κ-term on the set A is an element of
the unary semigroup T κ

A freely generated by A , and Ωκ
AV is the κ-submonoid of the

pro-V monoid freely generated by A, whose elements are called κ-words or κ-terms
over V. A κ-identity over V is an equality u = v, with u and v κ-words over V. The
κ-word problem for V consists in deciding if two κ-terms of T κ

A have the same image
under the natural homomorphism into the free pro-V monoid, ι : T κ

A → ΩAV. The
signature ω = { · , ω} is also of interest. Since, in an aperiodic monoid, any κ-term
coincides with the ω-term obtained by replacing all (ω−1)-powers by ω-powers, we
can work and formulate the results in terms of the signature ω, which we do from
hereon.

In Section 5, we adopt the simplified notation of McCammond [10] using the
curved parentheses to represent the ω-power, and so, the ω-terms are seen as words
on the extended alphabet A ∪ {(, )}.

Given w ∈ ΩADA\{1}, we consider the central basic factorization of w, under
the conditions described by Almeida [2], as the tuple (α, a, γ, b, β) ∈ ΩADA× A ×
ΩADA×A×ΩADA or as the triple (α, a, β) ∈ ΩADA×A×ΩADA satisfying one of
the following conditions:

(i) standard form: w = αaγbβ with a, b ∈ A, α, β, γ ∈ ΩADA, a /∈ c(α),
b /∈ c(β) and c(αa) = c(bβ) = c(w);

(ii) overlapped form: w = αbγaβ with a, b ∈ A, α, β, γ ∈ ΩADA, a /∈ c(αbγ),
b /∈ c(γaβ) and c(αbγa) = c(bγaβ) = c(w);

(iii) degenerate form: w = αaβ with a ∈ A, α, β ∈ ΩADA, a /∈ c(α), a /∈ c(β)
and c(αa) = c(aβ) = c(w).
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Almeida proved that this factorization exists and is unique and we denote it by
CBF(w). We iterate this factorization by applying it to the central factor γ until it
becomes 1 or the central basic factorization is of the degenerate form. We denote
this iterated central basic factorization (called of type 2 in [11]) by I2CBF(w) and it
has one of the following forms: I2CBF(w) = α1a1 · · ·αnanbnβn · · · b1β1, I2CBF(w) =
α1a1 · · ·αnanβn · · · b1β1 or I2CBF(w) = α1a1 · · · · · · b1β1.

To solve the word problem over DA, we use a result from [11] which states
that two pseudowords have the same DA-quasi-ternary tree if and only if they are
equal over DA. As these DA-trees may be infinite, and, as such, they may not
be calculated in full form, we use the improvement of this representation which
consists of representing the implicit operations on DA by means of DA-automata.

Briefly, the tree t(w) ∈ T2(A) which represents the pseudoword w ∈ ΩADA is
constructed recursively as follows: it has a root corresponding to the pseudoword
w and, assuming that CBF(w) = αaγbβ, the root is labeled by the pair (a, b)
and it has three sons, corresponding to the pseudowords α, γ and β, with edges
labeled 0, 1 and 2, respectively. If CBF(v) = αaβ is degenerate, for some vertex
corresponding to a pseudoword v, then this vertex is labeled a and it has only two
sons with edges labeled 0 and 2, respectively. Any tree of T2(A) is a DA-automaton,
t(w) = (V,→, q, F, λ), where q is the root, F is the set of vertices corresponding to
the empty word and λ is the state labeling function. The wrapped DA-automaton of
w, A(w), is the automaton obtained from t(w) by identifying states corresponding
to the same pseudoword. Moving the label of each state and adding it to the labels
of the edges starting in such state, we obtain an automaton that recognizes the
language associated to w, L(w) (see [11]), and which is minimal for the condition
L(A) = L(w). We end this section with the following powerful result from [11]:

Proposition 2.1. Let v, w ∈ ΩADA. Then DA |= v = w if and only if L(v) = L(w).

3. Factors of a pseudoword over DA

In this paper, we prove that the word problem can be effectively solved when we
work with ω-terms over DA. We start by considering certain types of factors of a
pseudoword w ∈ ΩADA.

Let w ∈ ΩADA. We define certain sets of factors of w: F(w), which consists of
the so called DA-factors of w; R(w), consisting of the relative remainders of w; and
S(w), the set of the absolute remainders of w.

We define fδ(w), l(δ,0)(w) and l(δ,2)(w) by induction on the length of δ ∈ {0, 1, 2}∗
as follows:

fε(w) = w

(fδ0(w), l(δ,0)(w), fδ1(w), l(δ,2)(w), fδ2(w))
def
= CBF(fδ(w))

or (fδ0(w), l(δ,0)(w), fδ2(w))
def
= CBF(fδ(w))

depending on whether the central basic factorization of fδ(w) is of the standard or
of the overlapped form, or if it is of the degenerate form. The set of DA-factors of
w is

F(w) = {fδ(w) | δ ∈ {0, 1, 2}∗ and fδ(w) is defined} ⊆ ΩADA.

It consists of the set of images under ρ : T2(A) 7→ ΩADA of the subtrees t(w), which
correspond to some factor of the form αδ, βδ or γδ of the iterated factorization of
some factor of the iterated central basic factorization of type 2 of w.
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The set of relative remainders of w is the set R(w) of elements of F(w), which
consists of the images under ρ of the subtrees attached to a vertex which is a son
from a central branch of a given vertex. These subtrees are the trees corresponding
to the factors γδ of some iterated factorization of a factor of the iterated central
basic factorization of type 2 of w. Formally, we write

R(w) = {fδ(w) | δ ∈ {0, 1, 2}∗1 and fδ(w) is defined} = f1(F(w)).

Let u, v ∈ ΩADA be such that u is a prefix of v. We use the notation u−1v to
represent any suffix of v such that v = u ·u−1v in ΩADA. Similarly, if u is a suffix of
v, we use vu−1 to denote any prefix of v such that v = vu−1 ·u in ΩADA. We define
the set of absolute remainders of w, S(w), to be the smallest subset containing w
and satisfying to the following conditions:

(i) u ∈ S(w)⇒ f0(u) ∈ S(w);
(ii) u ∈ S(w)⇒ f2(u) ∈ S(w);
(iii) u, v ∈ S(w), a ∈ A and o(ua) is an initial segment of o(v) implies that

(ua)−1v ⊆ S(w);
(iv) u, v ∈ S(w), a ∈ A and o(au) is a final segment of o(v) implies that

v(au)−1 ⊆ S(w).
Recall that o(u) is the reduced ∗-labeled linear ordering representing u ∈ ΩADA,

notation introduced in [11]. See Rosenstein [12] for the basics on linear orderings.
Let us see the relation that exists between the elements of S(w) and the closed
intervals of o(w), starting by observing some auxiliary results.

Lemma 3.1. Given w ∈ ΩADA, we have F(w) ⊆ S(w).

Proof. We obviously have w ∈ S(w). By conditions (i) and (ii) we have, respec-
tively, the elements f0(w) and f2(w) in S(w). By [11, Lemma 4.16], it follows
that, for each a ∈ A, there exist the smallest position of o(w) labeled a, p

o(w)
a ,

and the largest position of o(w) labeled a, p̄
o(w)
a . Therefore, and since A is finite,

there exist po(w) = max{po(w)
a |a ∈ A} and p̄o(w) = min{p̄o(w)

a |a ∈ A}. By defini-
tion of f0(w) and f2(w), it follows that o(f0(w)l(po(w))) is an initial segment of
o(w) and o(l(p̄o(w))f2(w)) is a final segment of o(w). By conditions (iii) and (iv),
f1(w) ∈ S(w). Proceeding inductively on the factors f0(w), f1(w) and f2(w), we
deduce that all the elements of F(w) are in S(w). �

Lemma 3.2. Let w ∈ ΩADA. For each position p in o(w), there exists a closed
interval o′ ⊆ o(w) such that:

(i) o′ ≃ o(fδ(w)) with fδ(w) ∈ F(w);
(ii) p = po′ or p = p̄o′ .

Proof. We proceed by induction on the content of w, c(w). If |c(w)| = 1, suppose
that c(w) = {a}, then w = an, with n finite, or w = aω. If w = an, with n finite,
then o(w) = n. In this case, o′ = o(f1p−1(w)), if p ≤ ⌈n/2⌉, or o′ = o(f1n−p(w)),
if p > ⌈n/2⌉ satisfies the desired conditions (it is enough to observe that in the
iterated central basic factorization of w the factors αi and βi are all empty and
each letter a at a given position is a distinguished label in a position po′ or p̄o′

of some iteration). In the case where w = aω, we have o(w) = ω + ω∗. If p is a
position in ω, then we set o′ = o(f1p−1(w)). Otherwise, we set o′ = o(f1q−1(w)),
where q is the positive integer corresponding to the position p in ω + ω∗ when we
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count from right to left. In any case, the chosen orderings satisfy the conditions (i)
and (ii).

Now, suppose that |c(w)| > 1. We consider the iterated central basic factor-
ization of type 2 of w, I2CBF(w). Then, by [11, Theorem 4.5] and by the ana-
logue version of [11, Theorem 4.18] for T2(A), we have o(w) = o1 + 1 + o2+
1 + · · · · · ·+ 1 + ō2 + 1 + ō1, for some orderings oi and ōi. If p ∈ o(w) corre-
sponds to any position labeled ai or bi of I2CBF(w), then o′ = o(f1i−1(w)) satisfies
the desired conditions. Otherwise, p is a position in oi or ōi, for some i. Since
the content of the pseudoword represented by this ordering is strictly contained in
c(w), the result follows by induction. �

Given fδ(w) ∈ F(w), with δ ∈ {0, 1, 2}∗, we define the depth of fδ(w), d(fδ(w)),
as the length of the word δ ∈ {0, 1, 2}∗.
Lemma 3.3. Let w ∈ ΩADA. Given fδ(w) ∈ F(w), with δ ∈ {0, 1, 2}∗, there
exist k ≥ 0, fδ1 , fδ2 , . . . , fδk

∈ F(w) and aδ1 , aδ2 , . . . , aδk
∈ A such that

o(fδ1aδ1fδ2aδ2 · · · fδk
aδk

fδ(w)) is an initial segment of o(w).

Proof. We proceed by induction on d(fδ(w)). The case where d(fδ(w)) = 0, i.e.,
fδ(w) = fε(w), is trivial since fε(w) = w. Let fδ(w) ∈ F(w), with δ ∈ {0, 1, 2}∗,
be such that d(fδ(w)) = 1. Three cases can occur: fδ(w) = f0(w), fδ(w) =
f1(w) or fδ(w) = f2(w). It follows, respectively, that o(f0(w)), o(f0l(po(w))f1(w))
and o(f0l(po(w))f1l(p̄o(w))f2(w)) are initial segments of o(w). Now, suppose that
d(fδ(w)) = n > 1. Let η be the prefix of δ with length |δ| − 1. By induction
hypothesis, there exist fη1 , fη2 , . . . , fηm ∈ F(w) and aη1 , aη2 , . . . , aηm ∈ A
such that o(fη1aη1fη2aη2 · · · fηmaηmfη(w)) is an initial segment of o(w). By def-
inition of fδ(w) ∈ F(w), it follows that fδ(w) is a factor of fη(w) if and only if
η is a prefix of δ. Consider the factors fη0, fη1, fη2 ∈ F(w). Note that one of
them is the factor fδ(w). We have, respectively, o(fη1aη1fη2aη2 · · · fηmaηmfη0(w)),
o(fη1aη1fη2aη2 · · · fηmaηmfη0l(po(η))fη1(w)) and o(fη1aη1fη2aη2 · · · fηmaηmfη0 ·
l(po(η))fη1l(p̄o(η))fη2(w)) as initial segments of o(w), in the cases where fδ(w) =
fη0(w), fδ(w) = fη1(w) and fδ(w) = fη2(w), respectively. �

Lemma 3.4. Let w ∈ ΩADA. We have:
(1) u ∈ S(w)⇒ ∃ p, q ∈ o(w) : o(u) ≃ [p, q];
(2) p, q ∈ o(w), p < q ⇒ ∃u ∈ S(w) : o(u) ≃ [p, q].

Proof. 1. By definition of f0(w), f1(w) and f2(w) and also by definition of po(w)

and p̄o(w), it follows that f0(w) ≃ [min o(w), po(w)[, f1(w) ≃ ]po(w), p̄o(w)[ and
f2(w) ≃ ]p̄o(w), max o(w)]. Note that the predecessors and the successors of po(w)

and p̄o(w) exist in any ∗-labeled linear ordering. Applying [11, Lemma 4.16] to
each interval isomorphic to the elements f0(w), f1(w) and f2(w), respectively, and
proceeding inductively, we deduce that all elements of F(w) are isomorphic to closed
intervals of o(w). Let u ∈ S(w) and a ∈ A be such that o(ua) is an initial segment
of o(w). Then o((ua)−1w) is a reduced ∗-labeled linear ordering, by [11, Lemma
4.13], because it is a closed interval on o(w). Hence there exist p, q ∈ o(w) such
that o((ua)−1w) ≃ [p, q] (in this case q = max o(w)). We obtain a similar result
using the condition (iv). Proceeding inductively, we conclude that all elements of
S(w) are isomorphic to some closed interval of o(w).

2. Let p, q ∈ o(w) be such that p < q and consider the closed interval [p, q].
By [11, Lemma 4.13], [p, q] is a reduced ∗-linear ordering. We want to prove
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that it is isomorphic to the ∗-linear ordering corresponding to an element of S(w).
Let p′ = predecessor(p) and q′ = successor(q). Consider the interval [p′, q′]. By
Lemma 3.2, there exists fδ(w) ∈ F(w) such that p′ = po(fδ(w)) or p′ = p̄o(fδ(w)).
If p′ = po(fδ(w)), we choose the factor fδ0, and if p′ = p̄o(fδ(w)), we choose the
factor fδ0l(po(fδ(w)))fδ1. Let fδ1 , . . . , fδk

∈ F(w) and aδ1 , . . . , aδk
∈ A be such

that o(fδ1aδ1 · · · fδk
aδk

fδ(w)) is an initial segment of o(w), as we had shown in
Lemma 3.3. Then either o(fδ1aδ1 · · · fδk

aδk
fδ0l(po(fδ(w)))(w)) ≃ [min o(w), p′] or

o(fδ1aδ1 · · · fδk
aδk

fδ0l(po(fδ(w)))fδ1l(p̄o(fδ(w)))(w)) ≃ [min o(w), p′], depending on
the case. By condition (iii) applied either k + 1 or k + 2 times and, depending
on the case, using the factors fδi of this initial segment, fδ0 and fδ1, the letters
aδi , l(po(fδ(w))) and l(p̄o(fδ(w))) and the pseudoword w, we obtain a pseudoword
v ∈ S(w) such that o(v) ≃ ]p′, max o(w)] = [p, max o(w)]. We proceed similarly
with q′ and using condition (iv) and the pseudoword v. It follows that there exists
u ∈ S(w) is such that o(u) ≃ [p, q]. �

We conclude, by Lemma 3.4, that the elements of S(w) correspond to the closed
intervals of o(w). Let u ∈ S(w) and let p, q ∈ o(w) be such that o(u) ≃ [p, q] as we
have seen in the previous lemma. Let fδ(w), fη(w) ∈ F(w), with δ, η ∈ {0, 1, 2}∗,
satisfy the conditions of Lemma 3.2, respectively, to p and q. We call p and q the
borders of u and |δ| and |η| are, respectively, the depth of each border.

4. Characterizations of ω-terms over DA

We solve the word problem for ω-terms over DA. For this purpose, we present, in
this section, several characterizations of an ω-term over DA. We start by observing
that the factors involved in the central basic factorization of an ω-term over DA are
also ω-terms over DA. As a tool to be used in inductive processes that follow, we
define, inductively, the length of an ω-term by |a| = 1, with a ∈ A, |uv| = |u|+ |v|
and |uω| = |u|+ 1.

Lemma 4.1. Let w ∈ Ωω
ADA\{1} and let (α, a, γ, b, β) (respectively, (α, a, β)) be

the central basic factorization of w. Then α, γ and β (respectively, α and β) are
also ω-terms over DA.

Proof. We proceed by induction on (c(w), |w|), where the pairs are ordered lex-
icographically. The case w ∈ A is trivial. Suppose that w = xω with x ∈
Ωω

ADA\{1} and that the factors involved in the central basic factorization of x,
CBF(x) = (α, a, γ, b, β) (respectively, CBF(x) = (α, a, β) in the degenerate case),
are ω-terms over DA. Then the central basic factorization of w is of one of the fol-
lowing forms: (α, a, γbβw2αaγ, b, β), in the standard case (note that w = xxω−2x =
x(xω−1)2x = x(xω)2x = xw2x), (αaγ, b, βw2α, a, γbβ), in the overlapped case, and
(α, a, βw2α, a, β), in the degenerate case. In any case, the factors involved are also
ω-terms over DA.

Now, suppose that w = xy, where the factors involved in the central basic
factorization of x and y are ω-terms over DA. Let CBF(x) = (αx, ax, γx, bx, βx)
or CBF(x) = (αx, ax, βx), and CBF(y) = (αy, ay, γy, by, βy) or CBF(y) = (αy , ay,
βy), be the central basic factorizations of x and y, respectively, depending on the
type of factorization. Several cases can occur:

(i) Suppose that c(x) = c(y) = c(w). Then the central basic factorization of w is
(αx, ax, γxbxβxαyayγy, by, βy), or (αxaxγx, bx, βxαyayγy, by, βy), or (αx, ax, γxbxβxαy,
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ay, γybyβy), or (αxaxγx, bx, βxαy , ay, γybyβy), depending on whether the central ba-
sic factorizations of x and y are, respectively, both of the standard form, CBF(x)
is of the standard form and CBF(y) is of the overlapped form, CBF(x) is of the
overlapped form and the CBF(y) is of the standard form, or both of the factor-
izations are of the overlapped form. In the cases where at least one of the cen-
tral basic factorizations of x and y is degenerate, we also have analogous central
basic factorizations of w. In fact, in the case where CBF(x) = (αx, ax, βx), we
have CBF(w) = (αx, ax, βxαyayγy, by, βy), CBF(w) = (αx, ax, βxαy, ay, γybyβy) or
CBF(w) = (αx, ax, βxαy, ay, βy), depending on whether the central basic factoriza-
tion of y is standard, overlapped or degenerate. In any case, the factors involved
are finite products of ω-terms and, therefore, they are ω-terms.

(ii) Now, we suppose that c(x) 6= c(w) and c(y) = c(w). We also suppose that the
central basic factorization of y is of the standard form, CBF(y) = (δyk

, ay0 , γy, by, βy),
where k = |c(y)| − 1. Let (δy(k−1) , ay1 , αy1) be the left basic factorization of δyk

,
as defined in [5]. Since c(δy(k−1)) $ c(δyk

) $ c(y), we repeat the process a finite
number of times until we obtain the factorization y = δy0ayk

· · ·ay1αy1ay0γybyβy.
Remember that the factors involved in this factorization are also ω-terms, by [5,
Lemma 2.2] and by induction hypothesis. Let i be maximum such that c(w) = c(x ·
δy0ayk

· · ·ayiαyiay(i−1)). Then we have CBF(w) = (x·δy0ayk
· · · ayiαyi , ay(i−1) , αy(i−1)

· · ·ay0γy, by, βy), where all the factors involved are ω-terms. In the case where the
central basic factorization of y is degenerate, we use the same argument and we ob-
tain CBF(w) = (x · δy0ayk

· · · ayiαyi , ay(i−1) , αy(i−1) · · · ay1αy1 , ay0 , βy) or CBF(y) =
(xδyk

, ay0 , βy). Let us see the case where the central basic factorization of y is of
the overlapped form, CBF(y) = (αy, ay, γy, by, βy). If c(xαy) = c(w) then, by a
similar argument to the one used in the previous case, we obtain CBF(w) = (x ·
δy0ayk

· · ·ayiαyi , ay(i−1) ,

αy(i−1) · · ·αy1 , ay, γybyβy). If c(xαy) 6= c(w) and c(xαyay) = c(w), then CBF(w) =
(xαy, ay, γybyβy). In the case where c(xαyay) 6= c(w), we use a similar argument
for γy and we obtain CBF(w) = (xαy , ay, δy0byk

· · · byiγyi , by(i−1) , γy(i−1) · · ·γy1byβy).
We obtain the dual result for the case where c(y) 6= c(w) and c(x) = c(w).

(iii) Finally, we can verify the case where c(x) 6= c(w) and c(y) 6= c(w) using,
again, an argument similar to that given for (ii). �

We say that an ω-term is reduced if it has no subterm of the form rωstω, with
c(s) ⊆ c(r) = c(t), and no subterm of the form (rsωzωt)ω , with r and t pseu-
dowords which may be empty and with c(t) ∪ c(r) ⊆ c(s) = c(z). Recall that, in
a pro-DA monoid, rωstω = rωtω, if c(s) ⊆ c(r) = c(t) (see [1, Lemma 8.1.4 and
Theorem 8.1.7]).

Lemma 4.2. Let w be an ω-term which defines an idempotent in ΩADA. Then we
have one of the following conditions:

(i) There exist ω-terms x, y, z, t such that DA |= w = xyωzωt, c(y) = c(z) =
c(w), |x| + |y| + |z| + |t| < |w| and x and t satisfy one of the following
conditions: they do not define idempotents over DA or c(s) ( c(w) for both
s = x and s = t;

(ii) There exist ω-terms x, y, z such that DA |= w = xyωz, c(y) = c(w), |x| +
|y|+ |z| < |w| and x and z satisfy one of the following conditions: they do
not define idempotents over DA or c(s) ( c(w) for both s = x and s = z.

We also have that xyωzωt (respectively, xyωz) is reduced.
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Proof. We begin by noting that the substitutions rωstω → rωtω, if c(s) ⊆ c(r) =
c(t), and (rsωyzωt)ω → rsωzωt, if c(ryt) ⊆ c(s) = c(z), do not change the value
of an ω-term over DA. Moreover, the length of the terms decrease when we apply
these substitutions. Let v be a reduced ω-term obtained from w by applying these
substitutions. Since w is idempotent over DA, v is also idempotent. Moreover,
|v| ≤ |w|. We write v = x1 · · ·xr, where each xi is a letter or a term of the form
yω

i . By [11, Corollary 3.17], there exists xi such that c(xi) = c(v) and xi = yω
i .

Suppose that there exists another factor xj with c(xj) = c(v) and xj = yω
j , for

some yj . Considering the fact that v is reduced, the factors xi and xj must be
consecutive and, therefore, v = xyωzωt, with x and t not satisfying one of the
conditions c(s) = c(v) = c(w) or s = yω

i , with s = x or s = t. Thus, either
x is not an idempotent, or x is an idempotent and c(x) ( c(v), and similarly
for t. Now, suppose that no other xj is such that c(xj) = c(v) and xj = yω

j .
Then v = x1 · · ·xi−1xixi+1 · · ·xr = xyωz for some x, y, z, where x and z are not
idempotents or, if any of them is idempotent, then it has strictly smaller content
than v. We also have |x|+ |y|+ |z|+ |t| < |w| in the first case, and |x|+ |y|+ |z| < |w|
in the second case. �

We are now ready to present some characterizations of the ω-terms over DA.
The following is a sort of periodicity theorem for DA.

Theorem 4.3. Let w ∈ ΩADA. The following conditions are equivalent:

(a) L(w) is rational.
(b) A(w) is finite.
(c) The set {ρ(t(w)v) | v ∈ V } is finite, where t(w) = 〈V,→, q, F, λ〉.
(d) F(w) is finite.
(e) R(w) is finite.
(f) S(w) is finite.
(g) w ∈ Ωω

ADA.

Proof. (a) ⇔ (b): Given A(w), which is finite, we construct a finite automaton
recognizing L(w), by replacing the label of each edge in A(w) by the pair whose
first component is the label that the edge has in A(w) and the second component
is the label of the initial vertex of the edge in A(w). For the direct implication we
do the converse: given the minimal automaton that recognizes the language L(w)
(and it is unique by [11, Lemma 4.10]), we construct the automaton A(w) whose
states are labeled with the second component of the label of the edges that starts
from that state.

(b) ⇔ (c): Note that, by definition, there exists a bijection between the set of
states in A(w) and the pseudowords ρ(t(w)v), with v ∈ V . Hence, the result follows.

(c) ⇔ (d): Applying [11, Lemma 4.9] to t(w), we have that the set of vertices,
{ρ(t(w)v) | v ∈ V }, is in bijection with F(w).

(d)⇒ (e): It is obvious, because R(w) ⊆ F(w).
(e) ⇒ (f): Suppose that R(w) is finite. To show that S(w) is also finite, we

proceed by induction on |A|, where the case |A| = 0 is trivial. Now, suppose that
|A| ≥ 1. Let Sn(w) = {u ∈ S(w) | the borders of u have depth not exceeding n}.
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Then, we have

Sn+1(R(w)) ⊆ Sn[f0(R(w))] ·A · f1(R(w)) · A · Sn[f2(R(w))]
∪Sn[f0(R(w))] · A · Sn[f1(R(w))]
∪Sn[f1(R(w))] · A · Sn[f2(R(w))]
∪Sn[f0(R(w))] ∪ Sn[f1(R(w))] ∪ Sn[f2(R(w))]

⊆ S[f0(R(w))] ·A · R(w) ·A · S[f2(R(w))]
∪S[f0(R(w))] · A · Sn(R(w))
∪Sn(R(w)) · A · S[f2(R(w))]
∪S[f0(R(w))] ∪ Sn(R(w)) ∪ S[f2(R(w))].

By induction on n and by definition of S(w), we obtain

Sn+1(R(w)) ⊆ ⋃n
i=0(S[f0(R(w))] ·A)i·

(S[f0(R(w))] ·A · R(w) ·A · S[f2(R(w))] ∪ S[f0(R(w))] · A ∪R(w))⋃
(S[f0(R(w))] ·A · R(w) ·A · S[f2(R(w))] ∪A · S[f2(R(w))] ∪R(w))·⋃n
i=0(A · S[f2(R(w))])i⋃ S[f0(R(w))] ∪R(w) ∪ S[f2(R(w))]

for all n and, therefore, S(R(w)) is contained in the union of these sets. We also
have

S(w) ⊆ {w} ∪ S(f0(w)) · A · R(w) ·A · S(f2(w))
∪S(f0(w)) · A · S(R(w))
∪S(R(w)) ·A · S(f2(w))
∪S(f0(w)) ∪ S(R(w)) ∪ S(f2(w)).

Considering the last two inclusions, it is enough to show that the following sets are
finite: S(f0(w)), S(f2(w)), S[f0(R(w))] and S[f2(R(w))]. Let u ∈ {f0(w), f2(w)}∪
f0(R(w)) ∪ f2(R(w)). Since c(f0(v)), c(f2(v)) ( c(v), for all v 6= 1, it follows that
c(u) ( c(w). Moreover, since

R(F(w)) = f1[F(F(w))] = f1(F(w)) = R(w),

we have, in particular, R(u) ⊆ R(w) and, therefore, R(u) is finite. Applying the
induction hypothesis to u, which has a smaller content, we conclude that S(u) is
finite. Hence S(w) is finite.

(f)⇒ (g): Let S(w) be finite. We proceed by induction on |c(w)| to show that w
is an ω-term. If c(w) = {a}, then w = an, with n finite, or w = aω and, therefore, it
is an ω-term. Now, suppose that |c(w)| ≥ 1. Let w =

−→∏VwW−1
i=0 (αiai) ·

←−∏VwW−1
i=0 (biβi)

be the iterated central basic factorization of w. Suppose that VwW is finite. Recall
that VwW is the number of iterations until we obtain the iterated central basic
factorization of w. Note that S(αi), S(βi) ⊆ S(w), for all i, because αi, βi ⊆ S(w).
Since, by induction hypothesis, S(w) is finite, then S(αi) and S(βi) are also finite,
for all i. Moreover, c(αi), c(βi) ( c(w), for all i. It follows, by induction hypothesis,
that αi and βi are ω-terms, for all i. Hence, w is an ω-term.

Now, suppose that VwW is infinite. Let ul,k =
−→∏l+k−1

i=l (αiai), vl,k =
←−∏l+k−1

i=l (biβi)
and wl,k =

−→∏
i≥l(αiai) ·

←−∏
i≥k(biβi), with k, l ≥ 0. We have w = u0,i ·αiai ·wi+1,i+1 ·

biβi · v0,i. By definition, wi,i = f1i(w) ∈ S(w). Let N be an integer satisfying
the condition of [11, Lemma 3.10], i.e., if i, j, k ≥ N , then c(wi,i) = c(wj,j) and
c(αkak) = c(bkβk). Since S(w) is finite, there exist l ≥ N and k > 0 such that
wl+k,l+k = wl,l = ul,l+k · wl+k,l+k · vl,l+k and, therefore, wl,l = uω

l,l+k · wl,l · vω
l,l+k.

Since c(wl,l) ⊆ c(ul,l+k) = c(vl,l+k), we have, by [11, Corollary 3.7], wl,l = uω
l,l+k ·

vω
l,l+k. Hence w = u0,lwl,lv0,l = u0,lu

ω
l,l+kvω

l,l+kv0,l which is an ω-term.
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(g) ⇒ (d): Let w ∈ Ωω
ADA. We proceed by induction on (|c(w)|, |w|) where the

pairs are ordered lexicographically.
If c(w) = a, then or w = an is a word and F(w) = {1, a2, a4, . . . , an} or F(w) =

{1, a, a3, . . . , an}, depending on whether n is even or odd, or w = aω and we have
F(w) = {1, aω}. In any case, F(w) is finite.

If |c(w)| > 1, we start by showing that the set f1∗(w) is finite. Let w =−→∏VwW−1
i=0 (αiai)·

←−∏VwW−1
i=0 (biβi) be the iterated central basic factorization of w. If ‖w‖

is finite, where ‖w‖ denotes the largest integer n such that c(αnan) = c(bnβn) =
c(w) with αnan and bnβn disjoint (notation introduced in [11]), then we can
write w = α0a0 · · ·αkakγkbkβk · · · b0β0, with ai, bi ∈ A, c(αi), c(βi) ( c(w), for
all i, and c(γk) ( c(w). By Lemma 4.1, these factors are also ω-terms. Since
c(γk) ( c(w), it follows, by induction on |c(w)|, that f1∗(γk) is finite. Since
f1∗(w) = f1∗(γk) ∪ {αiai · · · γk · · · biβi | i ≤ k}, it follows that f1∗(w) is finite.

If ‖w‖ is infinite, then, by [11, Proposition 3.15], w is idempotent. By Lemma 4.2,
we can write w in one of the following forms: w = xyωz, with |x|+ |y|+ |z| < |w|,
or w = xyωzωt, with |x| + |y| + |z| + |t| < |w|. Suppose that we have the first
case. Since c(y) ⊆ c(w) and |y| < |w|, by induction hypothesis applied to y, F(y)
is finite. Since (d)⇒ (f), it follows that S(y) is also finite. Similarly, the sets S(x)
and S(z) are finite. Hence we have

f1∗(w) = f1∗(xyωz) ⊆ S(x)yωS(z) ∪ S(x)yωS(y) ∪ S(y)yωS(z) ∪ S(y)yωS(y).

It follows that f1∗(w) is finite. The second case is similar.
Let l ≥ N and k > 0 be such that f1l+k(w) = f1l(w), where N satisfies the

condition of [11, Lemma 3.10]. Then the following equalities are satisfied by DA:

f1l(w) = αlal · · ·αl+k−1al+k−1f1l+k(w)bl+k−1βl+k−1 · · · blβl

= αlal · · ·αl+k−1al+k−1f1l(w)bl+k−1βl+k−1 · · · blβl

= (αlal · · ·αl+k−1al+k−1)ωf1l(w)(bl+k−1βl+k−1 · · · blβl)ω

= (αlal · · ·αl+k−1al+k−1)ω(bl+k−1βl+k−1 · · · blβl)ω

where the last equality follows from [11, Corollary 3.7]. It follows that

w = α0a0 · · ·αl−1al−1(αlal · · ·αl+k−1al+k−1)ω(bl+k−1βl+k−1 · · · blβl)ωbl−1βl−1 · · · b0β0.

Note that f1∗0(w) ⊆W0 = {α0, . . . , αl+k−1} and f1∗2(w) ⊆W2 = {β0, . . . , βl+k−1}.
Hence we haveF(w) = f1∗(w)∪F(f1∗0(w))∪F(f1∗2(w)) ⊆ f1∗(w)∪F(W0)∪F(W2).
Since W0 and W2 are finite sets of ω-terms on a smaller alphabet than c(w), we
have, by induction hypothesis, that F(W0) and F(W2) are finite. The implication
(g)⇒ (d) follows and this completes the proof of the theorem. �

5. An algorithm to compute the minimal DA-automaton

Given two ω-terms on an alphabet A, we wish to show that it is possible to
decide if they coincide over all elements of DA. By Theorem 4.3, we know that, if
w is an ω-term over DA, then the wrapped DA-automaton (which is minimal) that
represents w is finite. Moreover, by Proposition 4.11, Lemma 4.10, and Corollary
4.8 from [11], and by definition of minimal DA-automaton, two ω-terms coincide
over DA if and only if their wrapped DA-automata are isomorphic.

In this section, the aim is to construct the minimal DA-automaton of an ω-term.
For that purpose, we present an algorithm which constructs a finite DA-automaton
of an ω-term and, using existing tools, this automaton may be efficiently minimized.
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5.1. The main function. Let w be an ω-term and let w̄ = word(w) be a well-
parenthesized word on the alphabet A ∪ {(, )}, which results from replacing the ω-
powers of w by a pair of parentheses. In the automaton that we want to construct,
each state represents a word ū = word(u) that corresponds to an ω-term u which
defines a DA-factor of the ω-word defined by the initial ω-term w. The automaton
has as initial state the vertex corresponding to the ω-term w. For each state ū, the
sons of ū, which are the terminal states from an edge whose initial state corresponds
to ū, represent the words which define the factors of the central basic factorization
of u.

For better understanding the algorithm, we present the programming of some
routines. The complete programming of the algorithm in Python may be found in
http://cmup.fc.up.pt/cmup/amoura/DAautomaton complete.py.

The main routine, called DAautomaton and described in Algorithm 1, constructs
the automaton A = (V, E, ι, e, ν) by a recursive process. Initially, the automaton
is presented as follows: the set of states, V , consists of the initial state ι, which
corresponds to the word w̄, and of the final state e, which corresponds to the word
ε, the set of transitions is empty and the labeling relation has only the pair (e, ε).

1 def DAautomaton ( input ) :
2 e = ’ ’
3 i o ta = input
4 V = [ e , input ]
5 E = [ ]
6 nu = [ [ e , ’ e p s i l o n ’ ] ]
7 V0 = [ ]
8 V1 = [ input ]
9 while V1 != [ ] :

10 for w in V1 :
11 l l = Lef tLabe l (w)
12 r l = RightLabel (w)
13 F = Fac to r i z a t i on (w, l l , r l )
14 nu = nu+[F [ 0 ] ]
15 desc = F [ 1 ]
16 i f l en ( desc ) == 3 :
17 for j in range (3) :
18 E += [ [ w, j , desc [ j ] ] ]
19 i f desc [ j ] not in V:
20 V += [ desc [ j ] ]
21 V0 += [ desc [ j ] ]
22 else :
23 E += [ [ w, 0 , desc [ 0 ] ] ]
24 E += [ [ w, 2 , desc [ 1 ] ] ]
25 for i in range (2) :
26 i f desc [ i ] not in V:
27 V += [ desc [ i ] ]
28 V0 += [ desc [ i ] ]
29 V1 = V0
30 V0 = [ ]
31 A = [V,E, i o ta , e , nu ]
32 return A

Algorithm 1

Let V0 and V1 be, respectively, the set of states which were not yet processed and
the set of states which will be processed in the following step (which corresponds
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to run the while cycle once). Initially, V0 is the empty set and V1 consists of the
initial state. The algorithm stops when these sets are both empty.

The process consists in the computation that we proceed to describe. Given a
state of V1, which corresponds to an ω-term u, we calculate the positions ll and
rl in ū of the labels of the central basic factorization of u. For that, we use two
functions called LeftLabel and RightLabel, respectively.

We apply to this ω-term u and its label-positions the function Factorization,
that it is described in detail in 5.2. The function computes the label of the state
and keeps it in the list ν. It also produces the sons of this state. Then the main
routine tests if each one of the sons is already in V . If it is not, it is added to V
and to V0 to be processed later. A transition is created that goes from the state
that we are processing to the state corresponding to each son and labeled by the
order of such son (i.e., 0, 1 or 2).

When V0 = ∅ = V1, the routine stops. This means that all the elements have
already been processed and all the states corresponding to DA-factors of the initial
ω-term are already in the set of states of the automaton. Hence the DA-automaton,
that we denote by G(w), is constructed.

5.2. The factorization of an ω-term. It is the function Factorization, described
in Algorithm 2, that analyzes a state corresponding to a DA-factor of the initial
ω-term. It takes as input the word that corresponds to the state that we are
processing, ū, and the positions ll and rl, corresponding to the left label and to the
right label of the central basic factorization of this DA-factor. It uses the function
Parenthesis to compute the image of the partial function which associates to each
position in ū whose letter is a parenthesis the position corresponding to its matching
pair. So that this information will be easily found, the function Parenthesis creates
a list of length equal to |ū| and puts the value −1 on the entries corresponding to
the positions of ū whose letter belongs to A.

1 def Fac to r i z a t i on (w, l l , r l ) :
2 m = −1
3 P = Parenthes i s (w)
4 for i in range ( l en (P) ) :
5 i f i < l l < P[ i ] and i < r l < P[ i ] :
6 m = i
7 break
8 i f l l < r l or m != −1:
9 nu = [w,w[ l l ]+w[ r l ] ]

10 desc = [ S0 f o r g e t (w,P, l l ) , S1remind (w,P, l l , r l ,m) , S2 f o r g e t (w,P, r l
) ]

11 e l i f l l > r l :
12 nu = [w,w[ r l ]+w[ l l ] ]
13 desc = [ S0remind (w,P, r l ) , S1 f o r g e t (w,P, r l , l l ) , S2remind (w,P, l l ) ]
14 else :
15 nu = [w,w[ l l ] ]
16 desc = [ S0 f o r g e t (w,P, l l ) , S2 f o r g e t (w,P, r l ) ]
17 return [ nu , desc ]

Algorithm 2

The function Factorization verifies if the labels LeftLabel and RightLabel are
inside a same ω-power and keeps the information, in a variable m, of the position
where the largest ω-power that contains these labels begins. Then, it compares the
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values ll and rl, corresponding to the positions of the labels in the word ū. With
this data, it determines the type of the central basic factorization. We have the
following cases: if ll < rl or m 6= −1, then the central basic factorization is of the
standard form; if ll > rl and m = −1, then the central basic factorization is of
the overlapped form; if ll = rl and m = −1, then the central basic factorization is
degenerate. In the first case, we use the functions S0forget, S1remind and S2forget
to construct the sons, while in the second and third cases we use, respectively,
the functions S0remind, S1forget and S2remind, and the functions S0forget and
S2forget. These functions are presented in the next subsection.

5.3. The computation of the sons of an ω-term. We present the functions
that compute the sons of any state of the automaton. The functions consist on
the construction of words from the word corresponding to the state that is being
processed.

The functions whose name includes the word forget consider the subword of
the initial word ending at ll − 1, between ll + 1 and rl − 1, or starting at rl +
1, depending on whether we are computing the son of the transition 0, 1 or 2,
respectively, and consisting of all letters in A and all the matching parentheses in
the considered interval. We show, for example, the function S0forget in Algorithm 3,
which constructs the son of w from the transition labeled by 0.

1 def S0 f o r g e t (w,P, l l ) :
2 w0 = ’ ’
3 for i in range ( l l ) :
4 i f w[ i ] != ’ ( ’ or P[ i ] < l l :
5 w0 += w[ i ]
6 return w0

Algorithm 3

The functions whose name includes the word remind construct a word from the
initial word considering all the ω-powers where the labels are inserted. We describe
in detail the most intricate one, the function S1remind, presented in Algorithm 4.

1 def S1remind (w,P, l l , r l ,m) :
2 w1 = ’ ’
3 i f m == −1:
4 for i in range ( l l +1, r l ) :
5 i f (w[ i ] != ’ ( ’ and w[ i ] != ’ ) ’ ) or \
6 (w[ i ] == ’ ) ’ and P[ i ] > l l ) or \
7 (w[ i ] == ’ ( ’ and P[ i ] < r l ) :
8 w1 += w[ i ]
9 e l i f w[ i ] == ’ ) ’ and P[ i ] < l l :

10 for l in range (P [ i ] , i +1) :
11 w1 += w[ l ]
12 else :
13 for l in range ( i ,P [ i ]+1) :
14 w1 += w[ l ]
15 else :
16 M = P[m]
17 for i in range ( l l +1,M) :

18 i f w[ i ] != ’ ) ’ or P[ i ] > l l :
19 w1 += w[ i ]
20 else :
21 for l in range (P[ i ] , i +1) :
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22 w1 += w[ l ]
23 for i in range (m,M+1) :
24 w1 += w[ i ]
25 for i in range (m+1, r l ) :
26 i f w[ i ] != ’ ( ’ or P[ i ] < r l :
27 w1 += w[ i ]
28 else :
29 for l in range ( i ,P [ i ]+1) :
30 w1 += w[ l ]
31 return w1

Algorithm 4

Firstly, the routine verifies the value of the parameter m. If it is different from
−1, it means that the labels are in a same ω-power and the value of m is the
position where the largest ω-power containing both labels begins. The son consists
of the concatenation of the suffix of this ω-term beginning in the left label, with
the respective ω-term and the prefix of it ending in the right label. Moreover, all
the ω-powers containing one of the labels are concatenated as they are read. If
the parameter m is equal to −1, meaning that the labels are not in a same ω-
power, the routine constructs the son just reading the word from left to right and
concatenating all the ω-powers containing one of the labels.

We finish with an example of a DA-automaton G(w) constructed by the described
algorithm:

Example 5.1. Let w = (abωcaaω)ω and w̄ = (a(b)ca(a)). We have LeftLabel = c
in the position ll = 5 and RightLabel = b in the position rl = 3. As these labels are
in the same ω-power, corresponding to the interval [0, 10], it follows that the first
occurrence of c appears before the last occurrence of b, when we read from left to
right. Thus the central basic factorization of w is standard. The sons are calculated
with the functions S0forget, S1remind and S2forget, respectively, and correspond
to the following words: w̄0 = a(b), w̄1 = a(a)(a(b)ca(a))a(b) and w̄2 = ca(a). The
other states are constructed recursively. The DA-automaton G(w) associated to the
ω-term w = (abωcaaω)ω is described in Figure 1.

Figure 1. The DA-automaton G(w) associated to the ω-term w = (abωcaaω)ω .
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5.4. The complexity of the algorithm. As explained in the previous subsec-
tions, the algorithm constructs, in each step, the factors of the central basic factor-
ization of the ω-term that we are considering. However, nothing so far guarantees
that the algorithm stops and, consequently, that the automaton G(w) is finite.
This is what we propose to prove in this subsection together with the study of the
complexity of the algorithm.

Let w̄ = word(w) be the input and let |w̄| = n. For l < n, kl is the number of
pairs of parentheses containing the position l, K = maxl<n kl, l(i,j) is the length
of the subword bounded by the pair of parentheses (i, j), with 0 ≤ i, j < n, i.e.,
the length of the subword corresponding to the ω-power (i, j), Φl is the sum of the
lengths of the subwords corresponding to the ω-powers containing the position l
and Φ = maxl<n Φl.

Lemma 5.2. Let w ∈ T ω
A . The length of an ω-term representing a DA-factor of

the ω-word ι(w) is bounded above by n + 2Φ.

Proof. We give an upper bound for the length of the words corresponding to each
vertex of G(w), using the parameters defined above.

We start by observing that the functions whose name includes forget create
a word with length strictly smaller than the length of the input given to that
function. So, it is enough to verify what happens when we apply to a word a
function whose name includes remind. Consider the function S0remind and suppose
that w̄0 = S0remind(w̄). Note that, in this case, the central basic factorization of
w is overlapped. Let rl be the position of the right label. Then we have |w̄0| =
rl +

∑
i<rl<j(l(i,j) − 1) = rl + Φrl − krl < n + Φ, because we insert in the prefix

of the word w̄ ending in rl the subwords corresponding to the ω-powers containing
rl. Similarly, for w̄2 = S2remind(w̄), we have |w̄2| = ll + Φll − kll < n + Φ.
If the central basic factorization of w is standard, we have w̄1 = S1remind(w̄).
It follows that |w̄1| ≤ (rl − ll − 1) +

∑
i<ll<j(l(i,j) − 1) +

∑
i<rl<j(l(i,j) − 1) =

(rl − ll− 1) + (Φll − kll) + (Φrl − krl) < n + 2Φ.
In the following iterations, we have the same procedure. When we cut the word

to create the three sons, the functions remind add the subwords corresponding to
the ω-powers containing the position where we cut. Note that, when this cut is done
in a factor which had been added previously to the subword that issued from w̄,
the number of pairs of parentheses containing this position decreases and we have
just those corresponding to the ω-powers which had not been added (when we read
from the center to the borders). It follows that, in any depth that we are working,
|ū| < n + 2Φ, where ū is a word corresponding to a state of the automaton. �

We note that, in the above proof, we could use the number (2K + 1)|w̄| as an
upper bound of |ū|. However, the upper bound that we have considered is smaller
and easily computable. As the length of a word corresponding to a state of the
automaton is bounded above and A is a finite alphabet, it follows that V , the set
of states of the automaton, is finite. Hence G(w) is finite.

Corollary 5.3. The automaton G(w) produced by the algorithm is finite.

Although the previous lemma tells us that the number of states of G(w) is finite,
we need to find a smaller upper bound for this number so we can show that the
complexity of this construction is polynomial.
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We consider the following sets:

Q(w̄) = {(i, j, pi, pj) | −1 ≤ i, j ≤ |w̄|, λ(i), λ(j) /∈ {(, )}, 0 ≤ pi ≤ ki, 0 ≤ pj ≤ kj}
and

T (w̄) = {w̄(i,j,pi,pj) | (i, j, pi, pj) ∈ Q(w̄)}
where ki and kj are the numbers of pairs of parentheses containing the positions
i and j, respectively, and w̄(i,j,pi,pj) is the word obtained from w̄ beginning at the
position i+1, ending at the position j−1, reading, from left to right, the first pi ω-
powers containing i and reading, from right to left, the first pj ω-powers containing
the position j. We also use these parentheses as bridges to go from a higher position
to a lower position (or the dual, when we read from right to left) and this is done at
the largest ω-power containing both positions and that is read in any of the ways.
If there is no ω-power to be read, then we go from a higher to a lower position
by the smaller ω-power containing both positions i and j. The following example
should help to understand this definition.

Example 5.4. Let w̄ = a(b(cb)ab)a. We have, for example, the following elements
of T (w̄):

w̄(−1,7,0,0) = ab(cb)
w̄(−1,7,0,1) = a(b(cb)ab)b(cb)
w̄(−1,5,0,1) = ab(cb)c
w̄(−1,5,0,2) = a(b(cb)ab)b(cb)c
w̄(5,4,0,0) = ε
w̄(5,4,1,0) = (cb)
w̄(5,4,1,2) = (cb)ab(b(cb)ab)b(cb)
w̄(5,4,2,2) = (cb)ab(b(cb)ab)(b(cb)ab)b(cb).

Let Λw̄ : Q(w̄)→ T (w̄) be the function that maps each tuple (i, j, pi, pj) ∈ Q(w̄)
to the word w̄(i,j,pi,pj) ∈ T (w̄).

Proposition 5.5. The function Λw̄ : Q(w̄) → T (w̄) has in its image all words
corresponding to the states of G(w).

Proof. Let ū be a word corresponding to a state of G(w). Then ū is a son of a word
v̄ and, therefore, ū begins and ends, respectively, at positions i and j corresponding
to the left and the right labels of the central basic factorization of v̄ (ū = v̄1), or
i + 1 is the initial position of v̄ and j is the position corresponding to one of the
labels (ū = v̄0), or the dual (ū = v̄2). The numbers pi and pj correspond to the
ω-powers containing i and j, respectively, that are considered when we read from
i to j and from j to i, respectively. Note that the order in which these ω-powers
appear, when we read from the borders to the center, is from that of the smallest
length to that of the largest length. It follows that ū = w̄(i,j,pi,pj) for the values i,
j, pi and pj chosen above. �

We note that Λw̄ is not an injective function. For example, the empty word
is the image of all pairs of the form (i, i + 1, 0, 0), −1 ≤ i < |w̄|. Moreover, the
elements w̄(i,j,pi,pj) and w̄(i,j,pi−1,pj+1) may have the same image under Λw̄. This
follows from the fact that the pi-th ω-power when we read from the left coincides
with the (pj + 1)-th ω-power when we read from the right. By Proposition 5.5, we
have the following:

Corollary 5.6. The number of states of G(w) is at most (|w̄|+ 2)2(K + 1)2.
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Now, we are ready to determine the complexity of our algorithm. The main
function that constructs the automaton consists of a routine that processes each
state of the automaton once. For each element of V , it tests if this state has already
been processed, involving O(|V |) ≤ O(|w̄|2K2) steps. Then, it computes the left
and the right labels with the respective functions. These functions read each letter
of the word and, whenever a new letter is found, it is kept in the variable ll (respec-
tively, rl). The complexity of these functions is O(|A|(|w̄| + Φ)). Afterwards, the
algorithm constructs the sons of the state that is being processed using the func-
tion Factorization. This function uses the function Parenthesis and the functions
to compute the sons. The function Parenthesis reads the word and computes a list
with the positions of the pairs of matching parentheses, with complexity O(|w̄|+Φ).
The functions which construct the sons read the word corresponding to the state
and the ω-powers that will be considered in the new word. So, the complexity of
that is O(|w̄| + Φ). It follows that the complexity of the function Factorization is
O(|w̄|+ Φ). Hence, the complexity of the algorithm is:

(1) |V | · O(|V |+ 2|A|(|w̄|+ Φ) + 3(|w̄|+ Φ)) ≤ O(|w̄|4K4).

We have proved the following theorem:

Theorem 5.7. The algorithm that constructs the automaton G(w), described in
the previous subsections, has complexity not exceeding O(|w̄|4K4).

We have already observed, after Lemma 5.2, that (2K + 1)|w̄| is a higher upper
bound for the length of a word corresponding to a state than the upper bound
established in the proof of the lemma. However, we use this number make it easier
to prove the inequality 1.

Probably, an improvement of the programming and the discovery of a smaller
upper bound for the number of states of the automaton allow us to compute a
smaller upper bound to the complexity of the computation of G(w). However,
this upper bound can not be smaller than O(|w̄|2), as we can see by the following
example:

Example 5.8. We consider the sequence of words (w̄n)n∈N where
w̄n = (an(an−1(· · · (a1)))), with ai 6= aj , if i 6= j. We have |w̄n| = 3n and |An| = n,
where An is the alphabet involved in w̄n. We compute the number of states of
G(wn), |Vn|, by recurrence.

For n = 1, w̄1 = (a1), and for n = 2, w̄2 = (a2(a1)), the words corresponding
to the DA-factors are, respectively, (a1) and ε, and (a2(a1)), a2, (a1)(a2(a1)), (a1)
and ε. Hence G(w1) and G(w2) have, respectively, 2 and 5 states.

Let w̄n = (an(an−1(· · · (a1)))), with n ≥ 3. The central basic factorization of wn

produces the following sons: anan−1 · · · a2, (a1)(a2(a1)) · · · (an(an−1(· · · (a1)))) =
w̄1w̄2 · · · w̄n and (an−1(· · · (a1))) = w̄n−1. Thus, the number of states of G(wn) is
the sum of the number of states of G(wn−1) with the other states corresponding to
the DA-factors of wn and that are not DA-factors of wn−1. Let w̄n(0) = anan−1 · · ·a2

and w̄n(1) = (a1)(a2(a1)) · · · (an(an−1(· · · (a1)))) = w̄1w̄2 · · · w̄n be, respectively, the
sons of w̄n by the edges labeled 0 and 1. The successive iterations of the central
basic factorization of w̄n(0) produce the factors an−1 · · · a3, an−2 · · · a4, . . . , and
an+3

2
an+1

2
(respectively, an

2
, if n is even). Note that these factors are not states of

G(wn−1). Hence w̄n has n−1
2 factors (respectively, n

2 factors, if n is even) which
are descendants from the left edge of the state w̄n. On the other hand, the central
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basic factorization of w̄n(1) produces the factors w̄1w̄2 · · · w̄n−1, w̄n−1w̄n and w̄n−1.
Note that w̄n−1w̄n is the only factor which is not a state of G(wn−1), since it has
in its content the letter an. Moreover, the central basic factorization of this factor
produces the factors w̄n−1 and w̄n−1w̄n, which were already counted. Thus, we
count two new factors which are descendants from the central branch. We have the
following recurrence formula for the number of states of G(wn), with n ≥ 3:

|Vn| = |Vn−1|+ 3 +
⌊n

2

⌋
and, therefore, using basic calculus, we have, for m ≥ 1,

|V2m+1| = 9 + (m + 8)(m− 1)

and

|V2m| = 5 + (m + 7)(m− 1).

Hence, the number of states of G(wn) is Ω(|w̄|2).

Given an automaton G(w), we construct the finite automaton that recognizes
L(w) by replacing the label of each edge of G(w) by the ordered pair whose first
component is the label of the edge in G(w) and the second component is the label
of the initial state of the edge in G(w). After that, we minimize the automaton.
Brzozowski’s Algorithm [7] and Hopcroft’s Algorithm [8] to minimize a finite de-
terministic automaton are well known and they have exponential and O(lm log m)
complexity, respectively, where l is the cardinality of the alphabet and m is the
number of states of the automaton. However, Almeida and Zeitoun [6] described
an algorithm to minimize a finite deterministic automaton whose strongly con-
nected non-trivial components are cycles, in time O(l + d), where d is the number
of transitions of the automaton. Note that G(w) satisfies this condition, since in
any cycle of G(w) the edges are labeled by (1, x), with x ∈ A × A ∪ A and there
is only one edge going from each state with first component labeled 1. As the
number of states of the automaton is bounded above by (|w̄| + 2)2(K + 1)2, the
number 3(|w̄| + 2)2(K + 1)2 is an upper bound for the number of transitions of
the automaton. Furthermore, in 1971, Hopcroft and Karp [9] presented a linear
algorithm for testing the equivalence of two finite deterministic automata without
requiring previous minimization. So, we have established the following result:

Theorem 5.9. The word problem for ω-terms over DA has a solution in polynomial
time, not exceeding O((nK)4), where n is the length of the word corresponding to
the ω-term and K is the maximum depth of ω-powers.

Example 5.10. The minimal DA-automaton of the ω-term w = (abωcaaω)ω is
represented in Figure 2. It follows from identifying states v120 and v1201 of the
automaton G(w) presented in the Example 5.1. Note that the state v120 corresponds
to the ω-term aω and the state v1201 corresponds to the ω-term aaω, which are equal
over DA.
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Figure 2. The minimal DA-automaton associated to w = (abωcaaω)ω.
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IDEMPOTENT-GENERATED SEMIGROUPS AND
PSEUDOVARIETIES

J. ALMEIDA AND A. MOURA

Abstract. The operator which constructs the pseudovariety generated by
the idempotent-generated semigroups of a given pseudovariety is investigated.
Several relevant examples of pseudovarieties generated by their idempotent-
generated elements are given as well as some properties of this operator. Par-
ticular attention is paid to the pseudovarieties in {J, R,L, DA} concerning this
operator and their generator ranks and idempotent-generator ranks.

1. Introduction

Due to its applications in Computer Science, the theory of finite semigroups
saw significant advancements in the 1960’s driven by developments in the theory
of finite automata. This connection with finite semigroups was firstly explored to
obtain computational results. In parallel, combinatorial and algebraic properties of
finite semigroups were studied. Eilenberg [4] established a correspondence between
certain families of rational languages and certain classes of finite semigroups, called
pseudovarieties, which provided a suitable framework for the bridges between the
two theories.

There are many important pseudovarieties, often constructed from other ones by
applying suitable operators. Some natural operators have been extensively stud-
ied. In this paper, we introduce a new one which constructs the subpseudovariety
generated by the idempotent-generated semigroups of a given pseudovariety.

Several works have been dedicated to idempotent-generated semigroups. It is
well-known that any finite semigroup embeds into a finite regular idempotent-
generated semigroup, which was proved by Howie [6] using full transformations
semigroups. Howie [7] also proved that the full transformations subsemigroup con-
sisting of all order-preserving and contractive full transformations is idempotent-
generated. Laradji and Umar [8] improved this result and showed that, in fact,
every order-preserving and contractive full transformation is expressible as a prod-
uct of idempotents of the same type and with the same range. The analogous result
for the subsemigroup of contractive full transformations also holds [8].

On the other hand, Petrich and Reilly [14] proved that every completely simple
semigroup embeds into an idempotent-generated one. Furthermore, Petrich [13]
presents a concrete model of the embedding due to Pastijn and Yan [12] of a
semigroup into an idempotent-generated Rees matrix semigroup that fixes some
properties.
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Key words and phrases. Finite semigroup; pseudovariety; operator; idempotent-generated

semigroup; generator rank; idempotent generator rank.
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In this paper, while we do not obtain a complete characterization of the pseu-
dovarieties which are generated by their idempotent-generated semigroups, we prove
that many familiar pseudovarieties have this property. The techniques used for this
purpose include the representations of free profinite semigroups over R, J and DA
due to Almeida and Weil [3], Almeida [1], and Moura [9], respectively. In the cases
of R and J, we also observe an alternative approach based on some results con-
cerning transformations of a finite chain due to Pin [15] and Straubing [18] and
the results concerning idempotent-generated subsemigroups of full transformations
from Howie, and Laradji and Umar. On the other hand, the work of Petrich [13]
allows us to show that the pseudovarieties H̄, where H is a pseudovariety of groups,
CS and CR also have this property.

The new approach in the case of the pseudovarieties R and J is justified as
it gives a significant improvement in terms of the generator rank and idempotent
generator rank. More generally, we show that both ranks are infinite for every
pseudovariety in the interval [J,DS]. We also prove that every semigroup in the
subpseudovariety generated by all n-generated members of any of the pseudovari-
eties J,R, L,DA divides a semigroup in the same pseudovariety generated by at most
n + 1 idempotents. We compare these results with the works of Umar [19], and
Laradji and Umar [8] concerning the ranks and idempotent-ranks of the subsemi-
groups of all contractive full transformations, and contractive and order-preserving
full transformations, respectively. We observe that, in fact, we decrease the number
of idempotent generators of the idempotent-generated semigroups when we use the
embeddings of the semigroups of R and J presented in this paper.

The paper is organized as follows. In Section 2, we recall some basics of the
theory of pseudovarieties of semigroups and profinite semigroups and we introduce
some notation concerning operators on pseudovarieties. We also present a list of the
pseudovarieties and bases of pseudoidentities defining them that will be used in our
study. In Section 3, we observe some properties of the operator E, we determine
some pseudovarieties of the form VE and we make a short introduction of the main
question addressed in the paper: what are the pseudovarieties that are generated
by their idempotent-generated elements? We present in the following sections some
pseudovarieties having this property: in Section 4 using the embedding in a Rees
matrix semigroup constructed by Petrich, and in Section 5 using representations
of the free profinite semigroup. Finally, in Section 6 we determine the generator
rank and idempotent generator rank of every pseudovariety in the interval [J,DS]
and we also determine a lower bound for the idempotent generator rank of the sub-
pseudovarieties generated by all n-generated members of any pseudovariety in the
interval [J,DA]. Combining with the results of Section 5, we improve the last result
showing that the lower bound is the exact value in the case of the pseudovarieties
J,R, L,DA. To introduce some relevant results in our study, we develop some exist-
ing techniques that need to be recalled. Rather than including them in Section 2,
we briefly introduce them along as need.

2. Preliminaries

We assume acquaintance with notions concerning pseudovarieties of semigroups
and profinite semigroups. We briefly recall some basics and we refer the reader
to [1, 2, 15] for detailed information.
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For a semigroup S, let S1 be the monoid obtained by adjoining a neutral ele-
ment 1 to S in case S does not already possess one, and S1 = S otherwise. We
denote by E(S) the set of idempotents of S and by 〈E(S)〉 the subsemigroup of S
generated by E(S). For s ∈ S, sω denotes the unique idempotent in the subsemi-
group generated by s. We say that a semigroup S divides a semigroup T , and we
write S ≺ T , if there exists a surjective homomorphism of a subsemigroup of T
onto S.

A pseudovariety of semigroups is a class of finite semigroups that is closed under
taking subsemigroups, homomorphic images and finite direct products. Equiva-
lently, a pseudovariety of semigroups is a class of finite semigroups closed under
taking division and finite direct products. For example, S is the pseudovariety of
all finite semigroups.

There are many ways to construct new pseudovarieties from known ones, that
is by applying operators to pseudovarieties. For example, given a pseudovariety V,
the following classes of finite semigroups are pseudovarieties:

• EV consists of all S ∈ S such that 〈E(S)〉 ∈ V;
• DV consists of all S ∈ S such that, for every regular D-class D of S, D ∈ V;
• for a pseudovariety H of groups, H̄ consists of all S ∈ S such that every

subgroup G of S belongs to H.
We also have other types of operators that construct new pseudovarieties by de-
scribing the generators. The new pseudovariety is then the smallest pseudovariety
containing such semigroups. In this way, we introduce the operator VE, which is
the topic of this paper. Given a pseudovariety V, we define VE as the pseudovari-
ety generated by the subsemigroups generated by the idempotents of each member
of V, i.e.,

VE = 〈〈E(S)〉 | S ∈ V〉.
Note that VE ⊆ V as the indicated generators of VE belong to V.

Because it will be useful in our study, we present an obvious observation about
the subsemigroup generated by a subset of idempotents of a given semigroup:

Lemma 2.1. Let S ∈ S and X ⊆ E(S). Then 〈E〈X〉〉 = 〈X〉. In particular, we
have 〈E〈E(S)〉〉 = 〈E(S)〉 and 〈E〈E(D)〉〉 = 〈E(D)〉, for every regular D-class D
of S.

A semigroup equipped with a topology for which the multiplication is a continu-
ous function is called a topological semigroup. Finite semigroups are endowed with
the discrete topology. A topological semigroup S is a profinite semigroup (respec-
tively, a pro-V semigroup) if it is a compact semigroup which is residually finite
(respectively, residually in V), which means that, for any two distinct elements of
S, there exists a continuous homomorphism into a finite semigroup (respectively,
into a member of V) that separates them. Equivalently, profinite semigroups are
compact 0-dimensional, which means that the topology has an open basis consisting
of clopen sets. The elements of a pseudovariety V are pro-V semigroups.

We denote by ΩAV the free pro-V semigroup on A, which is the unique (up to
isomorphism of topological semigroups) pro-V semigroup such that every mapping
µ : A → S into a pro-V semigroup S can be extended to a unique continuous
homomorphism µ̂ : ΩAV→ S such that µ̂◦ ι = µ, where ι : A→ ΩAV is the natural
generating function (i.e., its image generates a dense subsemigroup of ΩAV). The
elements of ΩAV are called implicit operations over V. For u ∈ ΩAV the sequence
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(un!)n converges and we denote the limit by uω, which is the unique idempotent in
the closed subsemigroup generated by u.

An equality of the form u = v, with u, v ∈ ΩAS, is called a pseudoidentity
and |A| is its arity. The pseudoidentity is valid in a profinite semigroup S, and
we write S |= u = v, if, for every continuous homomorphism ϕ : ΩAS → S, we
have ϕ(u) = ϕ(v). It is easy to see that the validity of a pseudoidentity in a
finite semigroup is preserved under taking homomorphic images, subsemigroups
and finite direct products. Conversely, Reiterman’s Theorem [16] says that every
pseudovariety is defined by some set of finitary pseudoidentities. We end this section
with a list of pseudovarieties that will be used in this paper and some corresponding
bases of pseudoidentities defining them:

J = J(xy)ωx = (xy)ω = y(xy)ωK J -trivial semigroups;

R = J(xy)ωx = (xy)ωK R-trivial semigroups;

L = Jy(xy)ω = (xy)ωK L-trivial semigroups;

A = Jxω+1 = xωK aperiodic (or H-trivial) semigroups;

G = Jxω = 1K groups;

LG = J(xωy)ωxω = xωK local groups;

CR = Jxω+1 = xK completely regular semigroups;

CS = Jxω+1 = x, (xyx)ω = xωK completely simple semigroups;

RB = Jx2 = x, xyx = xK rectangular bands;

DA = J((xy)ωx)2 = (xy)ωxK regular D-classes are aperiodic semigroups;

DG = J(xy)ω = (yx)ωK regular D-classes are groups;

DO = J(xy)ω(yx)ω(xy)ω = (xy)ωK regular D-classes are orthodox semigroups;

DS = J((xy)ωx)ω+1 = (xy)ωxK regular D-classes are semigroups.

3. Properties of the operator E

We establish some basic properties of the operator E. We start by observing
that the definition given for VE, where V is a pseudovariety, is equivalent to VE

being generated by the idempotent-generated semigroups of V.

Lemma 3.1. The operator E has the following properties, where V and W are
arbitrary pseudovarieties:

(1) VE = 〈T ∈ V | T = 〈E(T )〉〉;
(2) V ⊆W implies VE ⊆WE;
(3) (V ∩W)E ⊆ VE ∩WE;
(4) (VE)E = VE;
(5) (EV)E = VE;
(6) E(VE) = EV.

Proof. (1) Let T = 〈E(S)〉 with S ∈ V. Since 〈E(S)〉 is a subsemigroup of S, it
follows that T ∈ V. By Lemma 2.1, we have that 〈E(T )〉 = 〈E〈E(S)〉〉 = 〈E(S)〉 =
T . Hence the generators of the two pseudovarieties are the same.

(2) is immediate from the definition of VE and (3) follows from (2).
(4) The direct inclusion follows from VE ⊆ V and (2). Conversely, since the

generators of VE are the semigroups 〈E(S)〉, with S ∈ V, it suffices to show that
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〈E(S)〉 ∈ (VE)E, for all S ∈ V. Indeed, since 〈E(S)〉 ∈ VE, by Lemma 2.1 and
definition of E we have 〈E(S)〉 = 〈E〈E(S)〉〉 ∈ (VE)E.

(5) We have (EV)E = 〈〈E(S)〉 | S ∈ EV〉 = 〈〈E(S)〉 | 〈E(S)〉 ∈ V〉. Let us see
that the generators of (EV)E are in VE. In fact, as 〈E(S)〉 ∈ V, Lemma 2.1 yields
〈E(S)〉 = 〈E〈E(S)〉〉 ∈ VE. The reverse inclusion follows from V ⊆ EV and (2).

(6) Since VE ⊆ V, applying the increasing operator E , we obtain E(VE) ⊆ EV.
If S ∈ EV, i.e., 〈E(S)〉 ∈ V, then Lemma 2.1 gives that 〈E(S)〉 = 〈E〈E(S)〉〉 is one
of the generators of VE so that, in particular, S ∈ E(VE). �

A natural question, for which we have no answer, is whether we always have
equality in part (3) of Lemma 3.1.

Corollary 3.2. Let V and W be pseudovarieties such that VE = V and EV = EW.
Then V ⊆W.

Proof. Applying the operator E to EV = EW and using property (5) of Lemma 3.1,
it follows that V = VE = (EV)E = (EW)E = WE ⊆W. �

Corollary 3.3. Given two pseudovarieties V and W, the following conditions are
equivalent:

(a) VE = WE;
(b) EV = EW;
(c) VE ⊆W ⊆ EV.

Proof. (a)⇒ (b) From (a) and property (6) of Lemma 3.1, it follows that EV =
E(VE) = E(WE) = EW.

(b)⇒ (c) The second inclusion in (c) follows from W ⊆ EW = EV. To show the
first inclusion, we recall that, by properties (4)–(6) of Lemma 3.1, ((EV)E)E = (EV)E
and E((EV)E) = EV = EW. Hence, by Corollary 3.2, (EV)E ⊆ W. Moreover, also
by property (5) of Lemma 3.1, VE = (EV)E ⊆W.

(c)⇒ (a) Applying the operator E to (c), by properties (2), (4) and (5) of
Lemma 3.1, we obtain VE = (VE)E ⊆ WE ⊆ (EV)E = VE and, therefore, WE =
VE. �

In other words, given a pseudovariety V, the equations XE = VE and EX = EV in
the variable X are equivalent and the class of its solutions is the interval [VE,EV].

It is natural to ask for which pseudovarieties V, VE is equal to V. As an obvious
example, for every pseudovariety V of bands, since its semigroups consist only of
idempotents, we have VE = V. But, there are pseudovarieties that do not satisfy
the equality V = VE. Let us see some examples:

Example 3.4. For every pseudovariety H of groups, we have HE = I, where I =Jx = yK is the trivial pseudovariety.

Example 3.5. It is well known that LG is the class of all finite semigroups such
that all idempotents are J -equivalent and, therefore, they are in the minimal ideal
of the semigroup. So we have (LG)E = 〈〈E(S)〉 | S ∈ LG〉 ⊆ CS $ LG.

Example 3.6. It is well known that RB∨G = CS∩O, where O = J(xωyω)ω = xωyωK
is the class of all finite orthodox semigroups. So we have (RB∨ G)E = (CS ∩O)E =
RB.
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The notion of E-local pseudovariety, introduced in [10], enables us to determine
(DO)E and (DH)E, as we see in the following examples. Recall that a pseudovariety
V is E-local if it satisfies the following property: given S ∈ S, 〈E(S)〉 ∈ V if and
only if 〈E(D)〉 ∈ V, for every regular D-class D of S.

Example 3.7. Let S ∈ DH. Since every regular D-class D of S is a group, it
follows that 〈E(D)〉 is trivial and, therefore, 〈E(D)〉 ∈ J. Since J is E-local (see [10,
Example 3.6]), we have 〈E(S)〉 ∈ J. Hence J ⊆ DH ⊆ EJ, where the first inclusion
is trivial. Thus it follows from Corollary 3.3 that (DH)E = JE = J, where the last
equality follows from Corollary 3.14, which is proved below.

Example 3.8. We observe that DO ⊆ EDA. Indeed, for S ∈ DO and a regular
D-class D of S, 〈E(D)〉 ∈ DA. Since DA is E-local (see [10, Proposition 3.5]), we
have 〈E(S)〉 ∈ DA. Hence S ∈ EDA. Since DA ⊆ DO ⊆ EDA, it follows from
Corollary 3.3 that (DO)E = (DA)E = DA, where the last equality follows from
Corollary 5.6 which is established in Section 5.

In an attempt to identify the pseudovarieties which are generated by their
idempotent-generated elements, we present some results in the following sections.
We start by suggesting, as an easy exercise, the result from Howie [6] which states
that any finite semigroup embeds into a finite regular idempotent-generated semi-
group, so that, in particular, we have the following result.

Proposition 3.9 (cf. Howie [6]). SE = S.

On the other hand, Pin [15] and Straubing [18] obtained the following represen-
tation theorems for R-trivial monoids and J -trivial monoids, respectively.

Theorem 3.10 (cf. Pin [15, Theorem IV.3.6]). A finite monoid is R-trivial if and
only if it is a submonoid of EX , the submonoid consisting of all contractive total
transformations of some finite chain X.

Theorem 3.11 (cf. Straubing [18]). A finite monoid is J -trivial if and only if it
divides CX , the submonoid of all order-preserving and contractive transformations
of some finite chain X.

Combining these theorems with the following results about idempotent-generated
subsemigroups of total transformations due, respectively, to Laradji and Umar [8]
and to Howie [7], we obtain Corollary 3.14.

Theorem 3.12 (cf. Laradji and Umar [8, Theorem 1.3]). The monoid EX is
idempotent-generated.

Theorem 3.13 (cf. Howie [7, Theorem 3.2]). The monoid CX is idempotent-
generated.

Corollary 3.14. The equality VE = V holds if V is any of the pseudovarieties
R, L, J.

Similarly, using embeddings into idempotent-generated semigroups of the same
type from Petrich and Reilly [14] and from Pastijn and Yan [12] concerning, respec-
tively, completely simple semigroups and completely regular semigroups, we obtain
the following results.

Proposition 3.15 (cf. Petrich and Reilly [14, cf. Lemma III.2.11]). (CS)E = CS.
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Proposition 3.16 (cf. Pastijn and Yan [12]). (CR)E = CR.

Using Proposition 3.15 we may establish an equality in Example 3.5, as we see
below.

Example 3.17. By Proposition 3.15, property (2) of Lemma 3.1 and since CS ⊆
LG, it follows that CS = (CS)E ⊆ (LG)E. Thus, and by Example 3.5, we have
(LG)E = CS.

In Section 4 we return to these last two results and we show how to prove them
using the general embedding of Petrich [13]. In Section 5, we prove that the pseu-
dovarieties R, L and J are fixed points of the E operator by a different approach,
namely by using implicit operations. While using transformation semigroups the
number of idempotent generators of the idempotent-generated semigroup depends
on the cardinality of the embedded semigroup, in this method the number of idem-
potent generators of the idempotent-generated semigroup is controlled by the num-
ber of generators of the embedded semigroup. However, for the case V = R, the
first method enables us to show that, in fact, there exists an embedding of an R-
trivial semigroup into an idempotent-generated R-trivial semigroup. In the other
cases, we just prove a division property. The second method is also used to prove
the equality for the pseudovariety DA, while we do not know how to apply the first
method.

4. The Petrich embedding into a Rees matrix semigroup

Based on the embedding of Pastijn and Yan [12] (see also Pastijn [11]), Pet-
rich [13] constructed an embedding of a semigroup S into an idempotent-generated
semigroup in terms of a Rees matrix semigroup over S1. This embedding preserves
some properties of the initial semigroup and it is this peculiarity that enables us to
give an alternative proof of the results from Petrich and Reilly [14, Lemma III.2.11]
and Pastijn and Yan [12], respectively, that every semigroup of CS and CR embeds
into a finite idempotent-generated semigroup of the same type.

We briefly recall the construction of this embedding. Let S be a semigroup (not
necessarily finite). We consider the Rees matrix semigroup ΦS =M(S1, S1,Σ;Q),
with Σ = {σ, τ}, where σ and τ are two distinct symbols that are not in S, and
Q = (qαs) is the sandwich matrix with entries

qσs = 1, qτs = s (s ∈ S1).

The mapping
ϕS : s→ (1, s, σ) (s ∈ S)

embeds S into ΦS, although it is not the unique embedding from S into ΦS. Petrich
determined the set of idempotents of ΦS, which is

(4.1) E(ΦS) = {(s, t, σ) ∈ ΦS | t ∈ E(S1)} ∪ {(s, t, τ) ∈ ΦS | t = tst}
and described Green’s relations on ΦS as follows.

Lemma 4.1 (Petrich [13, Lemma 4.3]). Let (s, t, α), (u, v, β) ∈ ΦS. Then:
(1) (s, t, α) L (u, v, β) if and only if t L v and α = β;
(2) (s, t, α) R (u, v, β) if and only if s = u and t R v;
(3) (s, t, α) H (u, v, β) if and only if s = u, t H v, and α = β;
(4) (s, t, α) D (u, v, β) if and only if t D v.
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Thus, ΦS has the same number of D-classes as S1 and each D-class D′ of ΦS,
which corresponds to a D-class D of S, has the following number respectively of
L-classes and R-classes: 2 · |L-classes of D| and |S1| · |R-classes of D|. EachH-class
of ΦS has the same number of elements of the corresponding H-class in S1.

It is obvious that if S is a finite semigroup, so is ΦS. Note that ΦS is generated
by the set of idempotents {(s, 1, σ) | s ∈ S1}∪{(1, 1, τ)}, which gives an immediate
proof of the result from Howie (see Proposition 3.9). Petrich also showed that this
embedding preserves other properties of S (see [13, Theorem 5.4]). In particular,
he proves the following corollary.

Corollary 4.2 (cf. Petrich [13, Theorem 5.4]). Every semigroup of H̄, where H is
a pseudovariety of groups, embeds into an idempotent-generated semigroup of H̄.

Choosing some specific subsemigroups of ΦS, we can prove the following results:

Proposition 4.3. Every semigroup of CS embeds into an idempotent-generated
semigroup of CS.

Proof. Note that, if S ∈ CS, then ΦS has at most two D-classes, the one corre-
sponding to D, D′, and the other corresponding to the neutral element added to S.
If we show that D′ is generated by its idempotents, then it suffices to consider the
embedding ϕ′S : s 7→ (1, s, σ) from S into the semigroup D′.

Let (1, s, σ), with s ∈ S, be any element of ϕS(S) and let e ∈ E(S) be such that
e H s. Then one can compute (1, e, τ) · (s, e, σ) = (1, s, σ) with (1, e, τ), (s, e, σ) ∈
E(D′). Hence, the group H-class {(1, s, σ) | s ∈ S} is contained in 〈E(D′)〉.
Since all H-classes of 〈E(D′)〉 have the same number of elements, we conclude that
〈E(D′)〉 = D′. Hence S embeds into 〈E(D′)〉, which is an idempotent-generated
completely simple semigroup. �
Proposition 4.4. Every semigroup of CR embeds into an idempotent-generated
semigroup of CR.

Proof. Let S ∈ CR. We want to determine an idempotent-generated completely
regular subsemigroup of ΦS where S embeds. Let H be an H-class of S. Since H
is a group, then the H-classes of ΦS of the form {s} ×H × {σ}, with s ∈ S1, and
{1} ×H × {τ} are groups. Let t be any element of S and Ht be the H-class of S
containing this element. We observe that the H-classes of the form {s}×Ht×{τ},
with s ≥J t, are groups. Let e ∈ E(S) be such that e H t. Then there exist x, y ∈ S
such that e = xsy = exsye. Hence e L sye and, since Le ∩Rsye is a group, we have
that esye H e and es R e. By Green’s Lemma, it follows that

µs : Ht → Hts

u 7→ us

is a bijection. Let v ∈ Ht be such that vs is the idempotent of Hts. Since vsv H v
and µs(vsv) = vsvs = vs = µs(v), then vsv = v and (s, v, τ) is the idempotent of
{s} ×Ht × {τ}.

Now, we observe that if an H-class of ΦS of the form {s}×Ht×{τ} is a group,
then s ≥J t. Thus, if there exists u ∈ Ht such that (s, u, τ) is an idempotent, then
usu = u, and so s ≥J u H t. So, we have identified all maximal subgroups of ΦS.

We consider the subsemigroup T of ΦS generated by the following idempotents:

(s, t, σ) with t ∈ E(S1) and s ≥J t;
(s, t, τ) with t = tst.
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Basically, we chose all idempotents of the R-classes whose H-classes are groups.
Thus, the product of any two idempotents on a same D-class is also on this D-class
and, specifically, on a H-class containing an idempotent of the set of generators.
Let us see what is the product of two idempotents of the set of generators that are
not in the same D-class. Let (s, t, α) and (u, v, β) be two such idempotents. We
have (s, t, α) · (u, v, β) = (s, tqαuv, β). As s ≥J t, then s ≥J tqαuv. Hence this
product is in an H-class that contains an idempotent of the set of generators of T .

Note that the H-classes of the form {1} × H × {σ}, where H is an H-class of
S1 are in T . In fact, given a ∈ S1, we have (1, a, σ) = (1, e, τ) · (a, e, σ), where
e ∈ E(S1) is such that e H a, and (1, e, τ) and (a, e, σ) are idempotents of T . It
follows that T is the subsemigroup of ΦS consisting of the R-classes of ΦS whose
H-classes are groups.

Hence T is a completely regular semigroup and ϕ′′S : s 7→ (1, s, σ) is an embedding
of S into T . �

In the above proof, we may reduce the choice of the idempotents and we may
consider the subsemigroup of T generated by the following idempotents:

(1, e, τ), (a, e, σ) with a ∈ S and e ∈ E(S) such that eHa.
This subsemigroup is also a union ofR-classes of ΦS whoseH-classes are groups and
the H-classes of the form {1}×H×{σ}, where H is anH-class of S1, are also in this
subsemigroup. However, to simplify the proof, we considered the subsemigroup T .

Example 4.5. Consider the completely regular semigroup

S = 〈a, b, c, d | a3 = a, b2 = b, c3 = c, d2 = d, ab = ba, cb = bc, ada = a,

ac = ca = bd = db = cd = dc = 0〉.
We present in Figure 1 a D-class of ΦS to illustrate the distribution of the idem-
potents. We also observe that T consists of the R-classes of ΦS whose H-classes
are groups, as we have mentioned previously.

Corollary 4.6. The pseudovarieties H̄, CS and CR satisfy the equality VE = V.

When we work with the pseudovarieties DS and DA, and since the regular D-
classes of the semigroups of these pseudovarieties are completely simple semigroups,
one may ask whether the construction used in Proposition 4.4 may lead to a proof
of existence of an embedding from every semigroup of any of these pseudovarieties
into an idempotent-generated semigroup of the same pseudovariety. However, in
the following example, we observe that this is not the case.

Example 4.7. Consider the semigroup S = 〈a | a3 = a2〉. We look at the sub-
semigroup T of ΦS generated by the idempotents of the same type as those of
Proposition 4.4 (see Figure 2). Note that neither the element (1, a, σ) nor any
element of the D-class Da is in T . We have to choose the idempotent (a, 1, σ)
to be a generator of T , but, in that case, T is no longer an element of DS (and,
consequently, of DA).

We end this subsection with no answer for the question: Does VE = V for any
of the pseudovarieties DS or DA? In the following section we see that, in fact, the
pseudovariety DA satisfies such equality.
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Figure 1. The Petrich embedding for a completely regular semigroup

5. Representations by implicit operations

We refer the reader to [2] for detailed information about profinite semigroups
and to standard references for the basics of topology. By an embedding of topo-
logical semigroups we mean a semigroup homomorphism that is simultaneously a
homeomorphism with the image subspace. A clopen subset of a topological space
is one that is simultaneously closed and open.

Theorem 5.1. Let V be a pseudovariety such that, for every n, there exists m such
that ΩnV embeds in 〈X〉 for some X ⊆ E(ΩmV). Then VE = V.

Proof. Let V be a pseudovariety satisfying the above conditions. Let S ∈ V and
ϕ : ΩnV −→ S be a continuous surjective homomorphism. Let µV : ΩnV → 〈X〉 ⊆
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Figure 2. The Petrich embedding for a monogenic monoid

ΩmV be an embedding, with X ⊆ E(ΩmV). We consider the following diagram:

ΩnV
µV //

ϕ

��

T

φ|T
��

� � // ΩmV

φ

��
S ∈ V φ(T ) ⊆ 〈E(F )〉 F ∈ V

where T is the image of µV.
We claim that there is a family of clopen subsets (Us)s∈S of ΩmV, pairwise

disjoint, such that Us ∩ T = µV(ϕ−1(s)). We proceed to prove the claim. For each
s ∈ S, let As = µV(ϕ−1(s)) and A′

s = T \As. Since {s} is a clopen subset of S, then
ϕ−1(s) is a clopen subset of ΩnV and µV(ϕ−1(s)) is a clopen subset of T . Since
As and A′

s are closed sets of the closed subspace T of ΩmV, As and A′
s are closed

subsets of ΩmV. Moreover, since ΩmV is compact and 0-dimensional, then As and
A′
s are separated by two disjoint clopen sets Vs and V ′

s , respectively. We choose an
arbitrary ordering for the elements of S: s1, . . . , s|S|. Let Us1 = Vs1 and recursively,
for i = 2, . . . , |S|, let Usi = Vsi \ (

⋃
j<i Usj ). Note that, for every i, Usi is also a

clopen subset of ΩmV and (Us)s∈S is a family satisfying the claim.
Since ΩmV is a pro-V semigroup and, for all s ∈ S, Us is a clopen subset,

there exists a continuous homomorphism φs : ΩmV → Fs with Fs ∈ V such that
Us = φ−1

s (φs(Us)) (cf. [1, 2]). Let φ : ΩmV → F =
∏
s Fs be the continuous

homomorphism such that φ = (φs)s∈S . Then Us = φ−1(φ(Us)) for all s ∈ S. We
consider the diagram

ΩnV
φ◦µV

##FFFFFFFF
ϕ

��
S oo

ρ
____ φ(T ) � � // 〈E(F )〉.
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We show that S is a homomorphic image of φ(T ), more precisely that, there exists
ρ : φ(T )→ S such that the diagram commutes. It suffices to show that, for w, z ∈
ΩnV, if (φ◦µV)(w) = (φ◦µV)(z), then ϕ(w) = ϕ(z). Let s1 = ϕ(w), s2 = ϕ(z) and
suppose that s1 6= s2. Since Us1 ∩Us2 = ∅, we have that φ(Us1 )∩φ(Us2 ) = ∅. Now,
µV(w) ∈ µV(ϕ−1(s1)) = Us1 ∩ T and, therefore, φ(µV(w)) ∈ φ(Us1 ∩ T ). Similarly,
we obtain φ(µV(z)) ∈ φ(Us2 ∩ T ). It follows that φ(µV(w)) 6= φ(µV(z)).

We conclude that S divides 〈E(F )〉. Since F ∈ V, it follows that 〈E(F )〉 ∈ VE

and, therefore, S ∈ VE. This shows that V ⊆ VE, while the reverse inclusion is
always verified. �

From Theorem 5.1, to conclude that VE = V, it suffices to exhibit an embedding
µV : ΩnV → 〈X〉 with X ⊆ E(ΩmV), for every integer n. We do not know if,
conversely, such an embedding always exists in case VE = V.

For V ∈ {R, L, J,DA}, we consider the unique continuous homomorphism µV such
that

µV : ΩnV → Ωn+1V
xi 7→ xωi y

ω,

where y is a new variable and we prove that µV is an embedding. In each case, we
depend heavily on a suitable representation of the profinite semigroup ΩnV.

Let us start with the pseudovariety R. We use the representation of implicit
operations over R by means of labeled ordinals due to Almeida and Weil [3]. We
briefly recall it. Let A be an alphabet with |A| = n and let rLO(A) be the set of
reduced A-labeled ordinals. Recall that an A-labeled ordinal is a pair (α, l), where
α is an ordinal and l : α → A is a labeling function. The content of (α, l), c(α, l),
is the range of l. The cumulative content of a limit ordinal β ≤ α, ←−c (β), is the set
of all letters a ∈ A such there exists a sequence (γk)k of ordinals with ∪kγk = β,
γk < β and l(γk) = a for all k. An A-labeled ordinal (α, l) is said to be reduced if
l(β) /∈ ←−c (β) for each limit ordinal β < α.

Let (α, l) ∈ rLO(A). For each a ∈ A, let γa be the smallest ordinal such that
γa < α and l(γa) = a (i.e., γa is the position of the first occurrence of a). We
set γa = 0 if l(γ) 6= a, for all γ < α. Let α1 = max{γa | a ∈ A} (i.e., the first
occurrence of the last appearing letter) and let β1 be such that α = α1 + 1 + β1,
with (α1, l1), (β1,m1) ∈ rLO(A), l1 = l|α1 and m1(γ) = l(α1 +1+γ) where γ < β1.
We call the equality α = α1 +1+β1 the left basic partition of (α, l). We iterate this
process while βi 6= 0. Let β0 = α, m0 = l and βi = αi+1 + 1 + βi+1 with αi+1 and
βi+1 constructed in the same way. While βi 6= 0, we obtain ordinals (αi, li) and
(βi,mi), with i ≥ 1, where li+1 = mi|αi+1

and mi+1(γ) = mi(αi+1 + 1 + γ) where
γ < βi+1. Almeida and Weil showed that α =

∑
i≥1(αi + 1) and they define the

product in rLO(A) that follows. Let (α, l), (β,m) ∈ rLO(A). If α is not a limit
ordinal, then

(5.1) (α, l)(β,m) = (α+ β, l′)

where l′(γ) = l(γ) if γ < α and l′(α + γ) = m(γ) if γ < β. If α is a limit ordinal,
then we write β = β1+β2 where β1 is the smallest ordinal such that m(β1) /∈ ←−c (α).
The product is given by

(5.2) (α, l)(β,m) = (α+ β2, l
′)

where l′(γ) = l(γ) if γ < α and l′(α+ γ) = m(β1 + γ) if γ < β2. Almeida and Weil
proved that rLO(A) equipped with this operation is isomorphic to ΩnR.
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Proposition 5.2. The function µR : ΩnR→ Ωn+1R is an embedding.

Proof. We denote by ψA : ΩnR → rLO(A) the isomorphism defined by Almeida
and Weil [3], where |A| = n. Let B = {a, b : a ∈ A} with b /∈ A. We consider the
following diagram

ΩnR
µR //

ψA

��

Ωn+1R

ψB

��
rLO(A) ν

//___ LO(B)

with ν defined as follows:

ν : rLO(A)→ LO(B)

(α, l) 7→ ((ω + ω)α, l′)

where LO(B) is the set of B-labeled ordinals and

l′ : (ω + ω)α→ B

β 7→
{
l(γ) if β = (ω + ω)γ + k with γ < α, k ∈ ω
b if β = (ω + ω)γ + ω + k with γ < α, k ∈ ω.

We prove that the diagram commutes, i.e., that ν = ψB ◦ µR ◦ ψ−1
A . Let (α =∑

i≥1(αi+1), l) ∈ rLO(A). Since ψ−1
A , ψB and µR are homomorphisms, we proceed

by induction on |c(αi, li)|, which is finite and less than |c(α, l)|, and we obtain:∏
i≥1(ψ

−1
A (αi, li)ai)

� µR // ∏
i≥1

(
µR(ψ−1

A (αi, li))aωi b
ω
)

_

ψB

��
(α =

∑
i≥1(αi + 1), l)

_
ψ−1

A

OO

(δ,m) =
∑

i≥1(((ω + ω)αi, l′i) + (ω + ω, gi))

where ai = mi−1(αi) and

gi : ω + ω → B

β 7→
{
ai if β < ω

b if β = ω + γ with γ < ω.

We want to prove that (δ,m) = ν(α, l) = ((ω + ω)α, l′). Indeed, we have

δ =
∑
i≥1

((ω + ω)αi + (ω + ω))

= (ω + ω)α1 + (ω + ω) + (ω + ω)α2 + (ω + ω) + · · ·
= (ω + ω)(α1 + 1 + α2 + 1 + · · · )
= (ω + ω)

∑
i≥1

(αi + 1)

= (ω + ω)α,
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where the third equality follows from [17, Exercise 1.41], and

m : (ω + ω)α→ B

β 7→


l′i(γ) if β = (ω + ω)(

∑i−1
j=1(αj + 1)) + γ

with γ < (ω + ω)αi
gi(γ) if β = (ω + ω)(

∑i−1
j=1(αj + 1)) + (ω + ω)αi + γ

with γ < (ω + ω),

where we set
∑0
j=1(αj + 1) = 0. In the first case, it follows that

m(β) = l′i(γ)

=

{
l′i(δ) if γ = (ω + ω)δ + k, with δ < αi, k ∈ w
b if γ = (ω + ω)δ + ω + k, with δ < αi, k ∈ w

=

{
l(α1 + 1 + · · ·+ αi−1 + 1 + δ) if γ = (ω + ω)δ + k

b if γ = (ω + ω)δ + ω + k

=

{
l(η) if β = (ω + ω)η + k

b if β = (ω + ω)η + ω + k

= l′(β)

where η =
∑i−1

j=1(αj + 1) + δ. In the second case, for η =
∑i−1

j=1(αj + 1) + αi, we
have

m(β) = gi(γ)

=

{
ai if γ < w

b if γ = w + δ with δ < w

=

{
l(α1 + 1 + · · ·+ αi−1 + 1 + αi) if β = (ω + ω)η + δ

b if β = (ω + ω)η + ω + δ

=

{
l(η) if β = (ω + ω)η + δ

b if β = (ω + ω)η + ω + δ

= l′(β)

and, therefore, m = l′. It follows that the diagram commutes and ν is a homomor-
phism from rLO(A) into rLO(B), where the product involved is the one defined
by formulas (5.1) and (5.2). Thus, µR is injective if and only if ν is injective. Let
(α, l) and (β,m) be reduced labeled ordinals such that ν(α, l) = ν(β,m). By [17,
Exercise 3.41], we have

(ω + ω)α = (ω + ω)β =⇒ α = β

and
l′ = m′ =⇒ l(γ) = m(γ) for all γ < α =⇒ l = m.

Hence (α, l) = (β,m) and ν is injective. �

The dual result for the pseudovariety L follows by duality.

Proposition 5.3. The function µL : ΩnL→ Ωn+1L is an embedding. �
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Now, we consider the pseudovariety J of J -trivial semigroups. We use the rep-
resentation by canonical form of implicit operations over J obtained by the first
author [1, Section 8.2]. Consider the variety V of type (2, 1) defined by the set of
identities

Σ = {(xy)z = x(yz), (xy)ω = (yx)ω = (xωyω)ω, xωx = xω = xxω , (xω)ω = xω}.
We may reduce any term in the variables x1, x2, . . . using the following Noetherian
and confluent system of reduction rules:

(rr1): to eliminate parentheses concerning the application of the operation of
multiplication;

(rr2): to substitute any subterm of the form tω by uω, where u is the product,
in increasing order of the indices, of the variables occurring in t;

(rr3): to absorb in factors of the form uω any adjacent factors in which only
occur variables of u.

A term of V is called a word if it does not involve the unary operation ω, and it
is called idempotent if it is of the form tω, for some term t. The content c(t) of a
term t is the set of variables occurring in t. The factorization in canonical form of
a term t is t = t1 · · · tn, where:

(cf1): each ti is a word or an idempotent;
(cf2): each idempotent ti is of the form uω, where u is a product of variables

with the indices in strictly increasing order;
(cf3): given two consecutive idempotents ti and ti+1, the sets c(ti) and c(ti+1)

are incomparable;
(cf4): two consecutive terms ti and ti+1 are not both words;
(cf5): if ti is a word and ti+1 is an idempotent, then the last letter of ti is

not in c(ti+1);
(cf6): if ti+1 is a word and ti is an idempotent, then the first letter of ti+1 is

not in c(ti).
Let FnV be the V-free algebra on {x1, . . . , xn}. The semigroup ΩnJ may be seen

as an algebra of type (2, 1), where all elements are constructed using the operations
of multiplication and omega power and the variables {x1, . . . , xn}. Then we have
a natural surjective homomorphism

ψ : FnV → ΩnJ

xi 7→ xi (i = 1, . . . , n),

and [1, Theorem 8.2.7] establishes that ψ is, in fact, an isomorphism. We are now
able to prove the desired proposition.

Proposition 5.4. The function µJ : ΩnJ→ Ωn+1J is an embedding.

Proof. By the above, to show that µJ is injective is equivalent to establishing that

ν : FnV → Fn+1V
xi 7→ xωi y

ω

is injective. Let w, z ∈ FnV be such that ν(w) = ν(z) and let w = w1 · · ·wm and z =
z1 · · · zn be the respective factorizations in canonical form. We want to determine
the factorizations in canonical form of ν(w) and ν(z). Let i ∈ {1, . . . ,m}. Suppose
that wi is a word, i.e., wi = xi1 · · ·xik . Then ν(wi) = xωi1y

ω · · ·xωikyω. Note that this
factorization is in canonical form, because it is a product such that two consecutive
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idempotents have incomparable contents. Suppose now that wi is an idempotent,
i.e., wi = (xi1 · · ·xil )ω with i1 < · · · < il. Then ν(wi) = (xωi1y

ω · · ·xωilyω)ω =
(xi1 · · ·xily)ω applying the reduction rule (rr2). Note that i1 < · · · < il < y
(assuming that the new letter y is larger than any of the others) and, therefore, the
last presented factorization of ν(wi) is in canonical form. Therefore, an idempotent
of FnV has as image an idempotent of Fn+1V and a word of length k has as image
a product of 2k idempotents of Fn+1V , in canonical form.

Consider now the product wiwj with j = i + 1. Note that, by definition of
canonical form, wi and wj are not both words. Suppose that wi is a word and wj
is an idempotent. Then

ν(wiwj) = xωi1y
ω · · ·xωikyω · (xj1 · · ·xjly)ω = xωi1y

ω · · ·xωik (xj1 · · ·xjly)ω
applying the reduction rule (rr3). By hypothesis xik /∈ c(wj) and we conclude that
the last factorization of ν(wiwj) is in canonical form. If wi is an idempotent and
wj is a word, or if both wi and wj are idempotents, then we have, respectively, the
following canonical forms for wiwj :

ν(wiwj) = (xi1 · · ·xiky)ωxωj1yω · · ·xωjlyω
and

ν(wiwj) = (xi1 · · ·xiky)ω(xj1 · · ·xjly)ω.
Let ν(w) = w̄1 · · · w̄m′ and ν(z) = z̄1 · · · z̄n′ be the factorizations in canonical
form of ν(w) and ν(z), respectively. Since ν(w) = ν(z), by [1, Theorem 8.2.8] we
have m′ = n′ and w̄i = z̄i, for all i. Three cases can occur for each factor w̄i:
w̄i = xωj , w̄i = yω or w̄i = (xj1 · · ·xjly)ω, for some j, l. Note that the content of the
idempotent in the last case has cardinal bigger than 1, whether in the other cases
is 1. We recover w as follows. In the first two cases, we substitute w̄i by xj and
by 1, respectively. In the last case, we substitute w̄i by (xj1 · · ·xjl )ω. It is easy to
see that the canonical forms of w and z are recovered and they are equal. It follows
that w = z and ν is injective. �

Finally, we treat the case of DA using the representation of implicit operations
over DA by means of labeled orderings obtained by Moura [9], which is similar to
the case of the pseudovariety R. So, we omit most details and we refer the reader
to [9] as needed. In that paper, we proved that there is a bijection between the free
profinite semigroup over DA, ΩADA, and the set of all reduced A-labeled ∗-linear
orderings, rLO∗(A).

Proposition 5.5. The function µDA : ΩnDA→ Ωn+1DA is an embedding.

Proof. Since ΩADA and rLO∗(A) are isomorphic, it suffices to prove that the fol-
lowing mapping is injective:

ν : rLO∗(A)→ rLO∗(B)

(o, l) 7→ ((ω + ω∗)2o, l′).

By [9], ν(o, l) is constructed from (o, l) in the following way: each position of o is
replaced by the ordering (ω+ω∗)2 and, if this position is labeled a ∈ A, the label of
each position on the resulting ordering is a or b, depending on whether the position
is in the first or second term of the form ω + ω∗. Thus, given two consecutive
positions p < q from ν(o, l), one and only one of the following cases can occur:
l′(p) = l′(q) = a, l′(p) = l′(q) = b, l′(p) = a and l′(q) = b, or l′(p) = b and l′(q) = a,
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for some a ∈ A. In the first three cases, both positions are in the same interval
(ω+ω∗)2 of o, resulting from the replacement of a position of o labeled a, for some
a ∈ A. In the fourth case, the positions are in consecutive intervals corresponding
to the replacement of consecutive positions of o. We split (ω + ω∗)2o in intervals
Ip, p ∈ o, of the form (ω + ω∗)2 and that are maximal for the following condition:
Ip = Ip,1 ∪ Ip,2 where Ip,1 is an interval whose elements are labeled with the same
letter of A and Ip,2 is an interval whose elements are labeled with b. It follows that
(ω+ω∗)2o =

⋃
p∈o Ip and l′(p̄) = l(p), for all p̄ ∈ Ip,1, with Ip = Ip,1∪Ip,2 satisfying

the above condition. Thus, we may recover (o, l) from ((ω + ω∗)2o, l′) considering
the ordering of such intervals with the labeling function that labels each interval
by a if the set of labels of its positions is {a, b}. �

Combining Propositions 5.2, 5.3, 5.4, and 5.5 with Theorem 5.1, we obtain the
following result, of which only the case of DA was not already proved by the alter-
native approach referred in Section 3.

Corollary 5.6. The pseudovarieties R, L, J and DA satisfy the equation VE = V.

It remains an open problem whether the pseudovariety DS satisfies the equality
VE = V. This motivates the study of the free profinite semigroup over DS, for which
no representation result is currently known.

6. Ranks

For a pseudovariety V we consider the following associated parameters:
• rankV is the least positive integer n such that V is defined by a set of

pseudoidentities on at most n variables, unless there is no such n, in which
case we let rankV =∞;
• for a positive integer n, V(n) denotes the pseudovariety generated by all
n-generated members of V, that is the class of all finite continuous homo-
morphic images of ΩnV;
• the generator rank of V, denoted grankV, is the least positive integer n such

that V = V(n), unless there is no such n, in which case we set grankV =∞;
• the idempotent generator rank of V, denoted idgrankV, is the least positive

integer n such that V is generated by its members which are generated by
at most n idempotents, unless there is no such n, in which case we put
idgrankV =∞.

The following are simple observations concerning these parameters.

Lemma 6.1. Let V be a pseudovariety and n a positive integer. Denote by Σn the
set of all pseudoidentities in at most n variables which are valid in V. Then the
following hold:

(1) rankV ≤ n if and only if V = JΣnK;
(2) grankV ≤ n if and only if V = V(n);
(3) idgrankV ≤ n implies V = VE(n);
(4) grankV ≤ idgrankV.

Lemma 6.2. Let x1, . . . , xn be n distinct variables and consider the word ui =
x1 · · ·xi−1xi+1 · · ·xn. Then the pseudoidentity

(6.1) (uω1 · · ·uωn)ω+1 = uω1 · · ·uωn
holds in DS(n− 1) but not in J(n).
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Proof. Ordering the variables by increasing order of the indices, the canonical form
of the implicit operation over J determined by the left side of the pseudoidentity
(6.1) is (x1 · · ·xn)ω while the right side is already in canonical form. By [1, Theo-
rem 8.2.7] it follows that ΩnJ fails (6.1), whence so does J(n).

Let ϕ : ΩnS → Ωn−1DS be any continuous homomorphism. We need to show
that ϕ identifies the two sides of (6.1), that is that ϕ(uω1 · · ·uωn) is regular. Now,
by [1, Theorems 8.1.10 and 8.2.7], ϕ(uω1 · · ·uωn) is regular if and only if it has the
same content as some ϕ(uωi ). Since c

(
ϕ(uω1 · · ·uωn)

)
contains at most n−1 variables,

there is an index i ∈ {1, . . . , n} such that c
(
ϕ(uω1 · · ·uωn)

)
=

⋃
j∈{1,...,n}\{i} c

(
ϕ(xj)

)
,

whence c
(
ϕ(uω1 · · ·uωn)

)
= c

(
ϕ(uωi )

)
. �

The following result is an immediate application of Lemma 6.2.

Proposition 6.3. Every pseudovariety in the interval [J,DS] has infinite grank. �

In contrast, the pseudoidentity definitions of the pseudovarieties J,R, L,DA, DG,
DO, DS given at the end of Section 2 show that the rank of each of them is two.
Indeed, the smallest pseudovarieties defined by one-variable pseudoidentities con-
taining the first four, respectively the last three, of these are respectively A and S.

There are pseudovarieties whose generator rank is smaller than its rank. As an
example, we consider the pseudovariety V = J(2). It is obvious that V = V(2)
and so the generator rank of V is two (note that, for example, the semigroup
〈e, f | e2 = e, f2 = f, fe = 0〉 is in J(2)\J(1)). Since, by Proposition 6.3, J has
infinite generator rank, it follows that J(2) ( J. Now, by Lemma 6.4 below, we
conclude that J(2) has rank bigger than two.

Lemma 6.4. Let Σ2 be the set of all pseudoidentities in at most two variables
which are valid in J(2). Then JΣ2K = J.

Proof. Let u, v ∈ Ω2S be such that the pseudoidentity u = v holds in J(2). For every
semigroup S ∈ J and every continuous homomorphism ϕ : Ω2S→ S, the elements
ϕ(u) and ϕ(v) belong to a two-generated subsemigroup of S, which in turn is in J(2).
Thus we have the equality of ϕ(u) and ϕ(v) and so the pseudoidentity u = v holds
in J.

For the direct inclusion, it suffices to note that, if u = v is a pseudoidentity in
at most two variables which is valid in J, then it is obviously valid in J(2), and so
it belongs to Σ2. Since rank J = 2, it follows that JΣ2K ⊆ J. �

At this point, we do not know what is the rank of the pseudovariety J(2) not
even if it is finite. Of course, if J(2) is finitely based, then it has finite rank; but we
also do not know if that is the case.

For the idgrank, we can prove the following results.

Lemma 6.5. We define, recursively, two sequences of implicit operations as fol-
lows: for n ≥ 3, we put

v3 = (x1x2)ωx3 · x2
1 · x3(x1x2)ω

w3 = (x1x2)ωx3 · x1 · x3(x1x2)ω

vn+1 = (x1 · · ·xn)ωxn+1 · vn · xn+1(x1 · · ·xn)ω

wn+1 = (x1 · · ·xn)ωxn+1 · wn · xn+1(x1 · · ·xn)ω .
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(a) If S is a semigroup from DA generated by n ≥ 2 idempotents, then S satisfies
the pseudoidentity vn+1 = wn+1.

(b) The pseudovariety J(n) fails the pseudoidentity vn+1 = wn+1.

Proof. (a) By hypothesis, there exists some continuous homomorphism π : ΩnDA→
S that maps the free generators xi to idempotents.

We proceed by induction on n. Given ϕ : Ωn+1S → S, we must show that
ϕ(vn+1) = ϕ(wn+1). Since π is onto and ΩnS is free profinite, ϕ factors through π,
say as ϕ = π ◦ ψ for some continuous homomorphism ψ : Ωn+1S→ ΩnDA.

At the basis of the induction, let us consider first the case n = 2. If ψ(x1x2) has
full content, then ϕ

(
(x1x2)ω

)
belongs to the minimum ideal of S. Since this ideal is

a rectangular band and both ϕ(v3) and ϕ(w3) are L and R-below ϕ
(
(x1x2)ω

)
, they

are both equal to this idempotent. Otherwise, ψ(x1x2) only involves one of the
free generators of ΩnDA and so ϕ(x1) is an idempotent, in which case the equality
ϕ(v3) = ϕ(w3) is trivially verified.

For the general case n > 2, similarly, if ψ(x1 · · ·xn) has full content, then
ϕ(vn+1) = ϕ(wn+1). Otherwise, let T = 〈x1, . . . , xn〉 so that ϕ(T ) is a semi-
group of DA generated by at most n− 1 idempotents. By induction hypothesis, it
satisfies the pseudoidentity vn = wn, whence ϕ(vn) = ϕ(wn). Taking into account
the definition of vn+1 and wn+1, we conclude that ϕ(vn+1) = ϕ(wn+1).

(b) Let ϕ = Ωn+1S → ΩnJ be the continuous homomorphism that fixes x1

and sends each other xi to xi−1. Consider the factorizations of vn+1 and wn+1

in idempotents and maximal explicit factors between them which results from the
recursive definition of these implicit operations. Then a straightforward induction
shows that both these factorizations and the result of applying ϕ to each factor
(and eliminating the repetition of x1 within each ω-power) are in canonical form.
Hence ϕ(vn+1) 6= ϕ(wn+1) by [1, Theorem 8.2.7]. Since ΩnJ is residually finite, this
shows that there is some member of J(n) that fails vn+1 = wn+1. �

In view of the definitions, Lemma 6.5 yields the following result.

Proposition 6.6. The inequality idgrankV(n) > n holds for every pseudovariety
V in the interval [J,DA]. �

Combining Propositions 6.6, 5.4, 5.2, 5.3, and 5.5 yields the following result.

Corollary 6.7. The equality idgrankV(n) = n+1 holds for every pseudovariety V
in {J,R, L,DA}. �

We finish the paper with a brief comparison of the results obtained here for the
equality V = VE, with V ∈ {J,R, L}, and the results that follow from the work of
Straubing [18] and Howie [7], and of Pin [15] and Laradji and Umar [8], respectively.

Straubing showed that an n-element J -trivial monoid divides Cn+1, and Pin
proved that a finite R-trivial monoid with cardinal n embeds into En.

On the other hand, several works deal with the ranks and idempotent ranks of
various finite transformation semigroups. Recall that the rank of a finite semigroup
is the minimum number of generators, and the idempotent rank of an idempotent-
generated finite semigroup is the minimum number of idempotent generators. Gomes
and Howie [5] showed that the rank and idempotent rank of the subsemigroup of
Tn consisting of all full transformations with range less than n are both equal to
n(n− 1)/2. The rank and idempotent rank of the subsemigroup of all contractive
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finite full transformations are both equal to n+1, as showed by Umar [19]. Finally,
Laradji and Umar [8] proved that the rank and idempotent rank of the subsemi-
group of all contractive and order-preserving finite full transformations are both
equal to n. We refer the reader to [20, 8] for detailed information on this topic.

Therefore, in the results quoted in Section 3 that follow from the works of these
authors, the idempotent rank of the idempotent-generated semigroup is related
with the cardinality of the embedded semigroup. In this section together with
Section 5, we proved that any finite semigroup of J, R, L or DA with rank n divides
an idempotent-generated semigroup of the same type with idempotent rank at most
n+1 (cf. Corollary 6.7). So, here the control on the number of generators is related
with the number of generators of the embedded semigroup, which may be much
smaller than its cardinality.
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E-LOCAL PSEUDOVARIETIES

A. MOURA

Abstract. Generalizing a property of the pseudovariety of all aperiodic semi-
groups observed by Tilson, we call E-local a pseudovariety V which satisfies the
following property: for a finite semigroup, the subsemigroup generated by its
idempotents belongs to V if and only if so do the subsemigroups generated by
the idempotents in each of its regular D-classes. In this paper, we present sev-
eral sufficient or necessary conditions for a pseudovariety to be E-local or for a
pseudoidentity to define an E-local pseudovariety. We also determine several
examples of the smallest E-local pseudovariety containing a given pseudovari-
ety.

1. Introduction

The motivation for this work came from an exercise suggested by Pin [5] about
a result from Tilson [8]. With the aim of finding a method for computing the
complexity of a finite semigroup in terms of the structure of its subsemigroups,
Tilson started by establishing a useful method for computing the group-complexity
of a finite semigroup with at most two non-zero D-classes. This led him to prove the
following result: given a finite semigroup S, the subsemigroup 〈E(S)〉 is aperiodic if
and only if, for every regular D-class D of S, the subsemigroup 〈E(D)〉 is aperiodic.

As a consequence of the work of Fitz-Gerald [4], we have that a regular semigroup
is orthodox if and only if the product of idempotents of every regular D-class of S is
idempotent. Thus, it suffices to analyze the property of the product of idempotents
to be an idempotent on every regular D-class to conclude the property for an
arbitrary product of idempotents.

Much work has been done on the structure of idempotent-generated semigroups.
So, it becomes interesting to determine the pseudovarieties V satisfying the following
property: given S ∈ S, 〈E(S)〉 ∈ V if and only if 〈E(D)〉 ∈ V, for each regular D-
class D of S. We call E-local a pseudovariety with this property.

This paper is a contribution towards the complete characterization of E-local
pseudovarieties. We start by recalling, in Section 2, some basics of the theory of
pseudovarieties of semigroups, in particular, some results concerning the block op-
erator B and the idempotent-generated subsemigroup of a semigroup. Section 3
concerns the study of E-local pseudovarieties: we observe some properties and ex-
amples, we present several sufficient conditions for a pseudovariety to be E-local
and we show that, in certain cases, these conditions are also necessary, and we
introduce a new operator, E, where VE is the smallest E-local pseudovariety con-
taining a pseudovariety V. Finally, in Section 4, we present some more necessary
or sufficient conditions for a pseudoidentity to define an E-local pseudovariety.
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2 A. MOURA

2. Preliminaries

We briefly recall some basics of the theory of pseudovarieties of semigroups. We
recommend [1, 5, 7] for a better understanding of this area.

Let S be a semigroup. We denote by E(S) the set of idempotents of S and by
〈E(S)〉 the subsemigroup of S generated by E(S). More generally, 〈X〉 denotes the
subsemigroup of S generated by X ⊆ S. In case S is finite, sω denotes the unique
idempotent in the subsemigroup generated by a given s ∈ S.

Let S be a finite semigroup and let D be a regular D-class of S. Consider the
equivalence relation ∼ on the set of group elements of a regular D-class D of S
defined in the following way: given two group elements a and b of D, a ∼ b if
and only if there exists an idempotent-chain e0, e1, . . . , en−1, en such that a H e0,
b H en, and either ei R ei−1 or ei L ei−1, for all i ∈ {1, . . . , n}. A block of D is the
Rees quotient of the subsemigroup of S generated by a ∼-class modulo the ideal
consisting of the elements that are not in D. The blocks of S are the blocks of its
regular D-classes.

A class of finite semigroups that is closed under taking subsemigroups, homo-
morphic images and finite direct products is called a pseudovariety and generally
denoted by V. For example, S denotes the pseudovariety of all finite semigroups.

We may construct new pseudovarieties from known ones by applying operators
to pseudovarieties. In this paper, we use the following operators on pseudovarieties:

• EV consists of all S ∈ S such that 〈E(S)〉 ∈ V;
• DV consists of all S ∈ S such that, for every regular D-class D of S, D ∈ V;
• for a pseudovariety H of groups, H̄ consists of all S ∈ S such that every

subgroup G of S belongs to H;
• BV consists of all S ∈ S such that, for every block B of S, B ∈ V;
• VE is the pseudovariety generated by the idempotent-generated semigroups

of V.
The last operator was introduced in Almeida and Moura [2] and we refer the reader
to that paper as needed, but we opt to present here an easy lemma that will be
used frequently in this paper:

Lemma 2.1 (Almeida and Moura [2]). The operator E has the following properties,
where V and W are arbitrary pseudovarieties:

(1) V ⊆ W implies VE ⊆ WE;
(2) (V ∩W)E ⊆ VE ∩WE;
(3) (VE)E = VE;
(4) (EV)E = VE;
(5) E(VE) = EV.

The main aim of our study is the characterization of the E-local pseudovarieties.
For this purpose, we need some results concerning idempotent-generated subsemi-
groups and blocks of such subsemigroups.

Lemma 2.2. For every pseudovariety V, BBV = BV.

Lemma 2.3. Let S ∈ S and X ⊆ E(S). Then 〈E〈X〉〉 = 〈X〉.
To prove that the idempotent-generated subsemigroup of a regular semigroup is

also regular, Fitz-Gerald [4] uses a technique that consists in writing a product of
idempotents of 〈E(S)〉 as a product of idempotents of 〈E(D)〉, for a regular D-class
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D of S. As a consequence, we have the following lemma whose statement and proof
may be found in [7, Lemma 4.13.1], for example. It enables us to easily conclude the
statement presented in the introduction that a regular semigroup S is orthodox if
and only if the product of idempotents of every regular D-class of S is idempotent.

Lemma 2.4. Let S be a semigroup and let s ∈ 〈E(S)〉 be an element of a regular
J -class J of S. Then, there exists an idempotent-chain e1, e2, . . . , em ∈ E(J) such
that s = e1e2 · · · em. Hence 〈E(S)〉 ∩ J = 〈E(J)〉 ∩ J .

Corollary 2.5. Every finite semigroup S has the following properties:
(1) Let a be a regular element of 〈E(S)〉. Then a is in a block of Da, where Da

is the regular D-class of S containing a.
(2) Let B be a block of 〈E(S)〉. Then B is also a block of 〈E(D)〉, for some

regular D-class D of S.
(3) Given X ⊆ E(S), the regular D-classes of 〈X〉 have only one block.

Proof. (1) and (2) follow immediately from Lemma 2.4 and from the definition of
block of S. Now, by Lemma 2.3 and by (1), we have that every regular element of
〈E〈X〉〉 = 〈X〉 is in a block of 〈E〈X〉〉 = 〈X〉 and we have (3). �

Lemma 2.4 also enables us to prove that the product of the operators E and B
is an idempotent operator, as we see in the following corollary.

Corollary 2.6. For every pseudovariety V, EBEBV = EBV.

Proof. Let S ∈ EBEBV, i.e., for every block B′ of 〈E(B)〉, with B a block of 〈E(S)〉,
B′ ∈ V. By Lemma 2.4, B = 〈E(B)〉. Moreover, the blocks of 〈E(B)〉 = B are
B and the trivial semigroup, the last one if B is not a D-class. Thus, for every
block B of 〈E(S)〉, B ∈ V, i.e., S ∈ EBV. The converse follows from E and B
being increasing operators. �

A pseudoidentity is a formal equality u = v, where u, v ∈ ΩAS, the set of A-ary
implicit operations. We say that S ∈ V satisfies u = v, and we write S |= u = v,
if uS = vS . Recall that an A-ary operation uS : SA → S has the following
property: for every homomorphism ϕ : S → T , with S, T ∈ V, the following
diagram commutes:

SA
uS //

ϕA

��

S

ϕ

��
T A

uT

// T

Reiterman’s Theorem [6] says that every pseudovariety is defined by some set of fini-
tary pseudoidentities, in the sense that it is the class of finite semigroups satisfying
this set of pseudoidentities. The converse of the theorem is easily verified.

In this paper, we use, in particular, the pseudovarieties that we list below to-
gether with some corresponding bases of pseudoidentities defining them:

I = Jx = yK trivial semigroups;

J = J(xy)ωx = (xy)ω = y(xy)ωKJ -trivial semigroups;

R = J(xy)ωx = (xy)ωK R-trivial semigroups;

L = Jy(xy)ω = (xy)ωK L-trivial semigroups;
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A = Jxω+1 = xωK aperiodic (or H-trivial) semigroups;

G = Jxω = 1K groups;

LG = J(xωy)ωxω = xωK local groups;

CR = Jxω+1 = xK completely regular semigroups;

CS = Jxω+1 = x, (xyx)ω = xωK completely simple semigroups;

RB = Jx2 = x, xyx = xK rectangular bands;

LZ = Jxy = xK left-zero semigroups;

DA = J((xy)ωx)2 = (xy)ωxK regular D-classes are aperiodic semigroups;

DG = J(xy)ω = (yx)ωK regular D-classes are groups;

DO = J(xy)ω(yx)ω(xy)ω = (xy)ωK regular D-classes are orthodox semigroups;

DS = J((xy)ωx)ω+1 = (xy)ωxK regular D-classes are semigroups.

3. E-local pseudovarieties

We start this section by observing some properties of E-local pseudovarieties and
several examples of pseudovarieties having this property. In particular, we prove, in
Example 3.8, the result of Tilson [8] that the pseudovariety A is E-local. After that,
we present several sufficient conditions for a pseudovariety to be E-local and we
show that these conditions are also necessary in case the pseudovariety is contained
in EDS. We finish with the introduction of the operator E, where VE denotes the
smallest E-local pseudovariety containing V.

3.1. Properties and examples. We start by noting that the property of being
E-local is preserved under intersection. Next, we relate the E-locality of V, EV
and VE.

Lemma 3.1. Let V be a pseudovariety and let S ∈ S. The following conditions are
equivalent:

(1) for every regular D-class D in S, 〈E(D)〉 ∈ V;
(2) for every regular D-class D in S, 〈E(D)〉 ∈ EV;
(3) for every regular D-class D in S, 〈E(D)〉 ∈ VE.

Proof. (3) ⇒ (1) ⇒ (2): This follows immediately from VE ⊆ V ⊆ EV.
(2) ⇒ (3): Note that 〈E(D)〉 ∈ EV if and only if 〈E〈E(D)〉〉 = 〈E(D)〉 ∈ V,

by Lemma 2.3. By the same lemma and by the definition of VE, we deduce that
〈E〈E(D)〉〉 = 〈E(D)〉 ∈ VE. �

Similarly, we may prove the following lemma:

Lemma 3.2. The following conditions are equivalent for every pseudovariety V
and every finite semigroup S:

(1) 〈E(S)〉 ∈ V;
(2) 〈E(S)〉 ∈ EV;
(3) 〈E(S)〉 ∈ VE. �

The equivalence of E-locality for the pseudovarieties V, EV, and VE follows di-
rectly from the previous lemmas.

Corollary 3.3. Let V be a pseudovariety. The following conditions are equivalent:
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(1) V is E-local;
(2) EV is E-local;
(3) VE is E-local.

The properties of the operator E (see Lemma 2.1) together with the previous
corollary enable us to identify intervals consisting of E-local pseudovarieties.

Proposition 3.4. Let V be an E-local pseudovariety. Then any pseudovariety
U ∈ [VE, EV] is E-local.

Proof. Applying Lemma 2.1, we obtain EV = E(VE) ⊆ EU ⊆ EV. The result now
follows from Corollary 3.3. �

In an attempt to identify all E-local pseudovarieties, we start by determining
several families of pseudovarieties satisfying this property.

Proposition 3.5. Let V and H, with H ⊆ G, be pseudovarieties. Then:
(1) BV is E-local;
(2) DV is E-local;
(3) H̄ is E-local.

Proof. (1) follows directly from item (2) of Corollary 2.5.
(2) By items (2) and (3) from Corollary 2.5, we have that, for every regular

D-class D of 〈E(S)〉, there exists a regular D-class D′ of S such that D is a D-
class of 〈E(D′)〉. Let S be a semigroup such that, for every regular D-class D,
〈E(D)〉 ∈ DV. Then, every regular D-class of 〈E(D)〉 is a semigroup in V. It
follows that every regular D-class of 〈E(S)〉 is a semigroup in V.

(3) Let S ∈ S be such that, for every regular D-class D, 〈E(D)〉 ∈ H̄. Let T be
a subgroup of 〈E(S)〉. By Lemma 2.4, T ⊆ 〈E(DT )〉, where DT is the D-class of S
containing T . Hence T ∈ H and 〈E(S)〉 ∈ H̄. �
Example 3.6. Since J = DI (see Pin [5, Proposition III.4.1]), it follows from
Proposition 3.5 that J is E-local.

Example 3.7. Since R = DLZ (see Pin [5, Proposition III.4.1]), it follows from
Proposition 3.5 that R is E-local.

Example 3.8. To conclude the result from Tilson [8], it suffices to note that
A = Ī. So, the conclusion that the pseudovariety is E-local follows immediately
from Proposition 3.5.

3.2. Characterizations. The properties of the operators E and B are useful to
obtain the following sufficient and equivalent conditions for a pseudovariety to be
E-local.

Proposition 3.9. The following conditions are equivalent:
(1) EV = EBEV;
(2) EV = BEV;
(3) there exists W such that EV = BW;
(4) there exists W such that EV = EBW;
(5) there exists W such that (EBW)E ⊆ V ⊆ EBW;
(6) the interval [VE, EV] has a fixed point for the operator B;
(7) B(VE) ⊆ EV;
(8) BV ⊆ EV.
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Proof. (1) ⇔ (2): Since EV ⊆ BEV ⊆ EBEV, if EV = EBEV, then EV = BEV and
we have the direct implication. The converse follows immediately by applying the
idempotent operator E to equality (2).

(2) ⇔ (3): The direct implication is trivial. Conversely, if EV = BW for some W,
then applying the idempotent operator B, we obtain BEV = BW = EV.

(4) ⇔ (5): Given W such that EV = EBW, it follows, by Lemma 2.1, that
(EBW)E = (EV)E = VE ⊆ V ⊆ EV = EBW. Conversely, if (EBW)E ⊆ V ⊆ EBW for
some W, then applying the increasing operator E, we obtain, by the same lemma,
E((EBW)E) = EBW ⊆ EV ⊆ EEBW = EBW, i.e., EV = EBW.

(2) ⇒ (6) ⇒ (4) ⇒ (1): The first implication is trivial. For the second one, ap-
plying the increasing operator E to VE ⊆ W = BW ⊆ EV, we obtain, by Lemma 2.1,
the equality EV = EBW. Finally, if the equality EV = EBW holds for some W, then
EBEV = EBEBW = EBW = EV, by Corollary 2.6.

(6) ⇔ (7): Let W be a fixed point of the operator B in [VE, EV]. It follows
immediately that B(VE) ⊆ BW = W ⊆ EV. Conversely, assuming (7) we have
VE ⊆ B(VE) ⊆ EV and B(VE) is a fixed point for the operator B.

(2) ⇒ (8) ⇒ (7): For the first implication, assuming (2) and applying the
operator B to the inclusion V ⊆ EV, we obtain BV ⊆ BEV = EV. The second
implication follows immediately from B(VE) ⊆ BV ⊆ EV. �
Theorem 3.10. Let V be a pseudovariety satisfying the conditions of Proposi-
tion 3.9. Then V is E-local.

Proof. It follows immediately from Proposition 3.5, Corollary 3.3 and item (2) from
Proposition 3.9. �

It is natural to ask whether the conditions of Proposition 3.9 are also necessary.
The answer is affirmative when the pseudovariety is contained in EDS.

Theorem 3.11. If V ⊆ EDS is an E-local pseudovariety, then items (1)-(8) from
Proposition 3.9 hold.

Proof. Let V ⊆ EDS be an E-local pseudovariety. We prove that BEV ⊆ EV, as the
converse inclusion is trivial. Let S ∈ BEV, i.e., for every block B of S, 〈E(B)〉 ∈ V.
Using the E-locality of V, to prove that S ∈ EV, i.e., 〈E(S)〉 ∈ V, it suffices to
show that, for every regular D-class D of S, 〈E(D)〉 ∈ V. Let D be a regular
D-class of S. Using again the E-locality of V and Lemma 2.3, we prove that, for
every regular D-class D′ of 〈E(D)〉, 〈E(D′)〉 ∈ V. Recall that, by item (3) from
Corollary 2.5, D′ has a unique block, B′, and is itself a semigroup, since V ⊆ EDS.
Hence D′ = B′, for some block B′ of 〈E(D)〉. Moreover, there exists a block B of
S such that B′ ≤ B. Thus 〈E(D′)〉 = 〈E(B′)〉 ≤ 〈E(B)〉 ∈ V (in fact, the equality
holds). Hence 〈E(S)〉 ∈ V and S ∈ EV. �

The previous theorem was initially announced without the hypothesis V ⊆ EDS,
but there was a flaw in the proof which was detected by an anonymous referee. The
example at the end of the paper shows that an extra hypothesis is needed.

Corollary 3.12. Let V ⊆ EDS be such that V = EV. Then V is E-local if and only
if there exists W ⊆ CS such that V = BW.

Proof. Suppose that V is E-local. Since V = EV and by Theorem 3.11 and item (2)
from Proposition 3.9, we have V = EV = BEV = BV. Given S ∈ V = BV, we have
that every block B of S is such that B ∈ V ⊆ EDS and, therefore, 〈E(B)〉 ∈ DS, i.e.,
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〈E(B)〉 ∈ CS. Note that 〈E(B)〉 has the same structure in R-classes and L-classes
as B, but it may have less elements in the H-classes. Hence B ∈ CS. It follows that
B ∈ V ∩ CS and S ∈ B(V ∩ CS). The converse follows from B being an increasing
operator and from V = BV. Thus, we have V = BV = B(V ∩ CS). The converse
implication follows directly from Proposition 3.5. �

We suggest, as an easy exercise, the verification of the E-locality of the pseudova-
rieties J, R, DS and A, for example, using the sufficient conditions of Proposition 3.9.

3.3. The operator E. Because there are pseudovarieties V which are not E-local,
it is natural to consider the smallest E-local pseudovariety containing V, which we
denote VE.

In this subsection, we determine some pseudovarieties of the form VE. For that
purpose, we also use the operator E which is studied in detail in [2].

Proposition 3.13. Let V ⊆ CS be such that VE = V. Then VE = (DV)E.

Proof. Let S = 〈E(S)〉 ∈ DV and let W be any E-local pseudovariety containing V.
Then 〈E(D)〉 ∈ V, for every regularD-class D of S, since D is in V and 〈E(D)〉 ≤ D.
Since W is E-local and V ⊆ W, it follows that S = 〈E(S)〉 ∈ W. Hence (DV)E ⊆ W
and, therefore, (DV)E ⊆ VE.

For the direct inclusion, since V ⊆ CS, we have V ⊆ DV. As E is an increasing
operator, it follows that V = VE ⊆ (DV)E. By Proposition 3.5, DV is E-local and so
is (DV)E, by Corollary 3.3. This yields the inclusion VE ⊆ (DV)E. �

Corollary 3.14. The class J is the smallest E-local pseudovariety.

Proof. Let V be an E-local pseudovariety. Since I ⊆ V, we have IE ⊆ VE = V.
By Proposition 3.13, we have IE = (DI)E = JE = J, where the last equality follows
from [2, Corollary 5.6]. Hence J ⊆ V. By Example 3.6, J is E-local, which establishes
the corollary. �

Example 3.15. It follows from Corollary 3.14 that the pseudovarieties LG and CR
are not E-local.

Example 3.16. By Proposition 3.13, we conclude that (RB)E = (DRB)E = (DA)E =
DA, where the last equality follows by [2, Corollary 5.6], and (CS)E = (DCS)E =
(DS)E.

Example 3.17. By Example 3.16, we have (DS)E = (CS)E ⊆ (CR)E. Conversely,
since CR ⊆ DS, by [2, Proposition 3.16] and Lemma 2.1, we deduce that CR =
(CR)E ⊆ (DS)E. Note that (DS)E is E-local, by Proposition 3.5 and Corollary 3.3.
Hence (CR)E ⊆ (DS)E, which establishes the equality (CR)E = (DS)E.

Example 3.18. Let H be a pseudovariety of groups. By [2, Example 3.7], we
have (DH)E = J ⊆ J ∨ H ⊆ DH. Since, by Proposition 3.5, DH is E-local, it
follows, by Proposition 3.4, that J∨H is E-local. That J∨H is the smallest E-local
pseudovariety containing H, is an immediate consequence from the fact that J is
the smallest E-local pseudovariety. Thus HE = J ∨ H.

Example 3.19. Let H be a pseudovariety of groups. By Example 3.16, we have
DA = (RB)E ⊆ (RB ∨ H)E and, therefore, DA ∨ H ⊆ (RB ∨ H)E. Now, from [2,
Lemma 3.1, Example 3.8, Corollary 4.2], we obtain (DO ∩ H̄)E ⊆ (DO)E ∩ H̄E =
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DA ∩ H̄ ⊆ DA. Therefore, (DO ∩ H̄)E ⊆ DA ⊆ DA ∨ H ⊆ DO ∩ H̄. As an intersec-
tion of E-local pseudovarieties is E-local, the pseudovariety DO ∩ H̄ is E-local. By
Proposition 3.4, DA ∨ H is E-local. Thus (RB ∨ H)E = DA ∨ H.

Example 3.20. Since LG ⊆ DS and DS is E-local by Proposition 3.5, we have
(LG)E ⊆ DS. On the other hand, by Example 3.16 and by [2, Example 3.17], we
obtain (DS)E = (CS)E = ((LG)E)E ⊆ (LG)E. Thus the equality (DS)E ⊆ (LG)E ⊆ DS
holds.

If we prove that (DS)E = DS, we will have the equality in the previous example.
This provides additional motivation for the calculation of (DS)E which remains an
open problem (see [2]).

We end this subsection by noting that (V∩W)E ⊆ VE∩WE, for all pseudovarieties
V and W. However, we do not know whether equality holds.

4. E-local pseudoidentities

We call E-local a pseudoidentity which defines an E-local pseudovariety. Note
that a pseudovariety defined by a set of E-local pseudoidentities is E-local, since it
is the intersection of the E-local pseudovarieties defined by each pseudoidentity of
the set. We do not know whether the converse is valid.

Our results from the previous section yield several E-local pseudoidentities. How-
ever, some of the results that we obtained, like some techniques developed allow
us to give a different characterization of several types of pseudoidentities with this
property.

For u ∈ ΩAS, let first(u) and last(u) be, respectively, the first and last letters
of u. We relate the E-locality of the pseudoidentities of the form u = v, where
first(u) 6= first(v) or last(u) 6= last(v), with the condition V ⊆ Ju = vK, where V is
one of the pseudovarieties R, L and J. We also obtain some results concerning the
pseudovariety DA.

Proposition 4.1. The following properties are verified by every pseudoidentity
u = v.

(1) If last(u) 6= last(v) and R |= u = v, then u = v is E-local.
(2) If first(u) 6= first(v) and L |= u = v, then u = v is E-local.
(3) If first(u) 6= first(v), last(u) 6= last(v) and J |= u = v, then u = v is E-local.

Proof. Let u = v be a pseudoidentity such that last(u) 6= last(v) and suppose that
R |= u = v. We claim that R ⊆ Ju = vK ⊆ ER. So that, by Example 3.7 and by
Proposition 3.4, Ju = vK is E-local. The first inclusion is assumed by hypothesis. To
prove the second inclusion, let S be a semigroup satisfying u = v and suppose that
S /∈ ER, i.e., 〈E(S)〉 /∈ R. Then, by [1, cf. Exercise 5.2.8], there exist two distinct
idempotents such that ef = f and fe = e. Evaluating the last letter of u by e, the
last letter of v by f and the other letters by e or f , we obtain S |= e = u = v = f ,
which is a contradiction.

Similarly, we obtain (2) and (3). �

Since, by [2], the pseudovarieties R, L, J and DA satisfy the equality VE = V, it
is easy to obtain the following results:

Theorem 4.2. Let u = v be an arbitrary pseudoidentity.
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(1) If first(u) = first(v) and last(u) 6= last(v), then u = v is E-local if and only
if R |= u = v.

(2) If first(u) 6= first(v) and last(u) = last(v), then u = v is E-local if and only
if L |= u = v.

(3) If first(u) 6= first(v) and last(u) 6= last(v), then u = v is E-local if and only
if J |= u = v.

(4) If first(u) = first(v), last(u) = last(v) and u = v is E-local, then DA |=
u = v.

Proof. (1) Let u = v be a pseudovariety such that first(u) = first(v) and last(u) 6=
last(v). Suppose that it is E-local. Since LZ ⊆ CS and (LZ)E = LZ, it follows
from Proposition 3.13 that (LZ)E = (DLZ)E = RE = R. Thus, as the pseudovarietyJu = vK is E-local and it contains LZ, it also contains (LZ)E = R. The converse
follows from Proposition 4.1. Dually, we obtain (2).

(3) It follows directly from J being the smallest E-local pseudovariety (see Corol-
lary 3.14) and from Proposition 4.1.

(4) In that case, we have RB |= u = v, RB ⊆ CS and (RB)E = RB. By Propo-
sition 3.13, we have (RB)E = (DRB)E = (DA)E = DA. As in (1), we deduce that
DA = (RB)E ⊆ Ju = vK. �

However, we do not have a characterization of all E-local pseudoidentities of the
form u = v, with first(u) = first(v) and last(u) = last(v).

Theorem 4.3 provides another sufficient condition for a pseudoidentity to be
E-local that follows from Lemma 2.4.

Theorem 4.3. Let u = v be a pseudoidentity such that u, v ∈ 〈X〉, where all
elements of X ⊆ ΩAS lie in a same regular D-class of ΩAS. Then u = v is E-local.

Proof. Let S be a finite semigroup and suppose that 〈E(D)〉 |= u = v, for each
regularD-class D of S. We want to prove that 〈E(S)〉 |= u = v. Let ϕ : ΩAS → S be
a continuous surjective homomorphism such that, for every x ∈ X , ϕ(x) ∈ 〈E(S)〉.
Since all elements of X lie in a same regular D-class of ΩAS, then there exists
a regular D-class D of S such that ϕ(x) ∈ D, for all x ∈ X . By Lemma 2.4,
it follows that ϕ(x) ∈ 〈E(D)〉, for all x ∈ X . Since u, v ∈ 〈X〉, it follows that
ϕ(u), ϕ(v) ∈ 〈E(D)〉 and, by hypothesis, they are equal. Thus 〈E(S)〉 |= u = v and
u = v is E-local. �

Note that several pseudoidentities considered in this paper are of this form.
Specifically, the pseudoidentities that we used in Section 2 to define the pseudova-
rieties J, R, L, A, DA, DG, DO and DS are all of this form. Another example is
the pseudoidentity (xωyω)ω = (yωxω)ω which defines the pseudovariety BG. As
a last example, Almeida and Volkov [3] showed that, if ui = vi, with i ∈ I, is a
basis of pseudoidentities for a pseudovariety of groups H, then u′i = v′i is a basis of
pseudoidentities for H̄, where u′i and v′i result from the substitution of each letter
xj ∈ A of ui and vi by exje where e is a fixed idempotent in the minimum ideal
of ΩAS. These pseudoidentities are also of the form of Theorem 4.3.

In the last result, we identify all E-local pseudoidentities with only one variable.

Corollary 4.4. The E-local pseudoidentities in one variable are those of the form
xα = xβ, with both α and β infinite.
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Proof. If α or β are finite and are not equal, then DA does not satisfy the pseu-
doidentity u = v since DA contains all finite monogenic aperiodic semigroups. Thus,
u = v is not E-local, by item (4) of Theorem 4.2.

On the other hand, if α and β are infinite, then xα and xβ are in a same group
with neutral element xω . Thus, by Theorem 4.3, the pseudoidentity is E-local. �

We do not know if every E-local pseudovariety is defined by a set of pseudoiden-
tities satisfying the condition of Theorem 4.3.

We finish the paper going back to Section 3.2, where we asked whether Theo-
rem 3.11 can be generalized to all E-local pseudovarieties. The answer is negative
as we see in the following example.

Example 4.5. Consider the pseudovariety W = J((xy)ωx(xy)ω)2 = (xy)ωx(xy)ωK,
which is E-local by Theorem 4.3. We show that W does not satisfy the condition
BV ⊆ EV from Proposition 3.9.

Let S be the syntactic semigroup of the regular language (a+b+c+d+)+a+b+ ·
(a+b+c+d+)+, whose egg-box picture is presented in Figure 1. The blocks of S are
the trivial semigroup and the unique block of the unique non-trivial regular D-class
of S, D, and which we denote by B. It is easy to see that B ∈ W. Note that (xy)ωx
and (xy)ω define implicitly R-equivalent elements, the latter being an idempotent.
Now, the product in B of two R-equivalent elements of D with the second one an
idempotent is an idempotent in D or is 0. On the other hand, the elements abcdab
and abcd are R-equivalent and the second one is an idempotent, but their product
in S, abcdababcd, is not an idempotent (it belongs to the 0-minimal and non-regular
D-class of S). Thus S = 〈E(S))〉 /∈ W, i.e., S /∈ EW.
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Figure 1. The egg-box picture of a semigroup in BW and not in EW
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THE COMPLETE PROGRAMMING OF THE DA-AUTOMATON

1 ”””
2 September 2009 , A. Moura
3
4 This f i l e conta in s the complete programming in Python o f the a lgor i thm
5 to compute the minimal DA−automaton presented in u r l {http ://cmup . f c . up

. pt/cmup/v2/ inc lude / f i l e d b . php? id=276&ta b l e=pub l i c a co e s&f i e l d=f i l e
} .

6
7 I t uses the module FSA−1.0 ( u r l http :// o s t e e l e . com/ so f tware /python/ f s a

/)
8 to minimize the automaton and to produce a g r a p h i c a l view with the
9 psv iewer gv . I f you are not i n t e r e s t e d in the v i s u a l i z a t i o n , you may

10 comment the l a s t two l i n e s o f t h i s f i l e .
11 ”””
12
13 from FSA import ∗
14 import time
15
16 s t a r t = time . time ( )
17
18 #f u n c t i o n s#
19 class Stack :
20 def i n i t ( s e l f ) :
21 s e l f . i tems =[ ]
22 def push ( s e l f , item ) :
23 s e l f . i tems . append ( item )
24 def pop ( s e l f ) :
25 return s e l f . i tems . pop ( )
26 #
27 def Parenthe s i s (w) :
28 s=Stack ( )
29 P=range ( l en (w) )
30 for i in P:
31 i f w[ i ]== ’ ( ’ :
32 s . push ( i )
33 e l i f w[ i ]== ’ ) ’ :
34 j=s . pop ( )
35 P[ i ]= j
36 P[ j ]= i
37 else :
38 P[ i ]=−1
39 return P
40 #
41 def Lef tLabe l (w) :
42 s =[ ’ ( ’ , ’ ) ’ ]
43 for i in range ( l en (w) ) :
44 char=w[ i ]
45 i f char not in s :
46 l l=i
47 s+=[char ]

1
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48 return l l
49 #
50 def RightLabel (w) :
51 s =[ ’ ( ’ , ’ ) ’ ]
52 for i in range ( l en (w) ) :
53 j=−1− i
54 char=w[ j ]
55 i f char not in s :
56 r l=j
57 s+=[char ]
58 return l en (w)+r l
59 #
60 def F a c t o r i z a t i o n (w, l l , r l ) :
61 m=−1
62 P=Parenthe s i s (w)
63 for i in range ( l en (P) ) :
64 i f i<l l <P[ i ] and i<r l<P[ i ] :
65 m=i
66 break
67 i f l l <r l or m!=−1:
68 nu=[w,w[ l l ]+w[ r l ] ]
69 desc =[ S0 f o rge t (w,P, l l ) , S1remind (w,P, l l , r l ,m) , S2 f o rge t (w,P, r l ) ]
70 e l i f l l >r l :
71 nu=[w,w[ r l ]+w[ l l ] ]
72 desc =[S0remind (w,P, r l ) , S1 f o rge t (w,P, r l , l l ) , S2remind (w,P, l l ) ]
73 else :
74 nu=[w,w[ l l ] ]
75 desc =[ S0 f o rge t (w,P, l l ) , S2 f o rg e t (w,P, r l ) ]
76 return [ nu , desc ]
77 #
78 def S0 fo rge t (w,P, l l ) :
79 w0=’ ’
80 for i in range ( l l ) :
81 i f w[ i ] != ’ ( ’ or P[ i ]< l l :
82 w0+=w[ i ]
83 return w0
84 #
85 def S2 fo rge t (w,P, r l ) :
86 w2=’ ’
87 for i in range ( r l +1, l en (w) ) :
88 i f w[ i ] != ’ ) ’ or P[ i ]> r l :
89 w2+=w[ i ]
90 return w2
91 #
92 def S1 fo rge t (w,P, r l , l l ) :
93 w1=’ ’
94 for i in range ( r l +1, l l ) :
95 i f (w[ i ] != ’ ( ’ and w[ i ] != ’ ) ’ ) or \
96 (w[ i ]== ’ ) ’ and P[ i ]> r l ) or \
97 (w[ i ]== ’ ( ’ and P[ i ]< l l ) :
98 w1+=w[ i ]
99 return w1

100 #
101 def S0remind (w,P, r l ) :
102 w0=’ ’
103 for i in range ( r l ) :
104 i f w[ i ] != ’ ( ’ or P[ i ]< r l :
105 w0+=w[ i ]
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106 else :
107 for l in range ( i ,P [ i ]+1) :
108 w0+=w[ l ]
109 return w0
110 #
111 def S2remind (w,P, l l ) :
112 w2=’ ’
113 for i in range ( l l +1, l en (w) ) :
114 i f w[ i ] != ’ ) ’ or P[ i ]> l l :
115 w2+=w[ i ]
116 else :
117 for l in range (P[ i ] , i +1) :
118 w2+=w[ l ]
119 return w2
120 #
121 def S1remind (w,P, l l , r l ,m) :
122 w1=’ ’
123 i f m==−1:
124 for i in range ( l l +1, r l ) :
125 i f (w[ i ] != ’ ( ’ and w[ i ] != ’ ) ’ ) or \
126 (w[ i ]== ’ ) ’ and P[ i ]> l l ) or \
127 (w[ i ]== ’ ( ’ and P[ i ]< r l ) :
128 w1+=w[ i ]
129 e l i f w[ i ]== ’ ) ’ and P[ i ]< l l :
130 for l in range (P[ i ] , i +1) :
131 w1+=w[ l ]
132 else :
133 for l in range ( i ,P [ i ]+1) :
134 w1+=w[ l ]
135 else :
136 M=P[m]
137 for i in range ( l l +1,M) :
138 i f w[ i ] != ’ ) ’ or P[ i ]> l l :
139 w1+=w[ i ]
140 else :
141 for l in range (P[ i ] , i +1) :
142 w1+=w[ l ]
143 for i in range (m,M+1) :
144 w1+=w[ i ]
145 for i in range (m+1, r l ) :
146 i f w[ i ] != ’ ( ’ or P[ i ]< r l :
147 w1+=w[ i ]
148 else :
149 for l in range ( i ,P [ i ]+1) :
150 w1+=w[ l ]
151 return w1
152 #
153 def DAautomaton( input ) :
154 e=’ ’
155 i o t a=input
156 V=[e , input ]
157 E=[ ]
158 nu =[ [ e , ’ e p s i l o n ’ ] ]
159 V0=[ ]
160 V1=[ input ]
161 while V1 ! = [ ] :
162 for w in V1 :
163 l l=Lef tLabe l (w)
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164 r l=RightLabel (w)
165 F=F a c t o r i z a t i o n (w, l l , r l )
166 nu=nu+[F [ 0 ] ]
167 desc=F [ 1 ]
168 i f l en ( desc )==3:
169 for j in range (3 ) :
170 E+=[[w, j , desc [ j ] ] ]
171 i f desc [ j ] not in V:
172 V+=[desc [ j ] ]
173 V0+=[desc [ j ] ]
174 else :
175 E+=[[w, 0 , desc [ 0 ] ] ]
176 E+=[[w, 2 , desc [ 1 ] ] ]
177 for i in range (2 ) :
178 i f desc [ i ] not in V:
179 V+=[desc [ i ] ]
180 V0+=[desc [ i ] ]
181 V1=V0
182 V0=[ ]
183 A=[V,E, io ta , e , nu ]
184 return A
185
186
187 #input#
188 input=raw input ( ”What i s the w−word?” )
189 #input =”(a ( b ) ca ( a ) ) ”
190
191 Gw=DAautomaton( input )
192
193 e lapsed = ( time . time ( ) − s t a r t )
194 print ”number o f s t a t e s o f Gw=” , l en (Gw[ 0 ] )
195 print ” time =” , e lapsed , ” sec . ”
196
197
198 #FSA#
199 def DAautomaton2fsa (A) :
200 V=A[ 0 ]
201 E=A[ 1 ]
202 nu=A[ 4 ]
203 G=[ ]
204 l=−1
205 for i in range ( l en (E) ) :
206 l=E[ i ] [ 1 ]
207 i f l ==0:
208 G+=[[E[ i ] [ 0 ] , E [ i ] [ 2 ] , ’ 0 ’ ] ]
209 e l i f l ==1:
210 G+=[[E[ i ] [ 0 ] , E [ i ] [ 2 ] , ’ 1 ’ ] ]
211 else :
212 G+=[[E[ i ] [ 0 ] , E [ i ] [ 2 ] , ’ 2 ’ ] ]
213 g =[ ]
214 for i in range ( l en (V) ) :
215 for j in range ( l en (G) ) :
216 i f G[ j ] [0]==V[ i ] :
217 G[ j ] [ 0 ] = i
218 G[ j ] [2]+=nu [ i ] [ 1 ]
219 i f G[ j ] [1]==V[ i ] :
220 G[ j ] [ 1 ] = i
221 v=range ( l en (V) )
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222 for i in range ( l en (G) ) :
223 g+=[(G[ i ] [ 0 ] ,G[ i ] [ 1 ] ,G[ i ] [ 2 ] ) ]
224 a=FSA(v , [ ] , g , v [ 1 ] , [ v [ 0 ] ] )
225 amin=a . minimized ( )
226 return [ a , amin ]
227
228
229 f=DAautomaton2fsa (Gw)
230 a=f [ 0 ]
231 amin=f [ 1 ]
232 a . view ( )
233 amin . view ( )

Algorithm 1
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