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Abstra
t
The 
on
ept of entropy and related measures has been applied in learning sys-tems sin
e the 1980s. Several resear
hers have applied entropi
 
on
epts toindependent 
omponent analysis and blind sour
e separation. Several previousworks that use entropy and mutual information in neural networks are basi
allyrelated to predi
tion and regression problems.In this thesis we use entropy in two di�erent perspe
tives: �rst as a 
ostfun
tion in neural networks (multi-layer per
eptrons - MLP) for supervised 
las-si�
ation problems; and se
ond, as the basis for a new entropi
 measure forunsupervised 
lassi�
ation (
lustering).Related with the new entropi
 
ost fun
tion we show in the present workhow to use Rényi's quadrati
 entropy of the errors between the output of anMLP and the desired targets as a 
ost fun
tion in 
lassi�
ation problems: theError Entropy Minimization Algorithm (EEM). We present several optimiza-tion pro
edures for this algorithm, namely: how to use an appropriate adaptivelearning rate; how to tune the smoothing parameter when performing entropygradient 
omputation; and, the 
onditions to apply a bat
h-sequential algorithmfor training with the EEM algorithm.Regarding unsupervised 
lassi�
ation, we present a 
lustering algorithm basedon a new entropi
 dissimilarity matrix. This matrix is the basis for a new 
lus-tering pro
ess, based on layered entropi
 subgraphs, whi
h we 
all LEGClust.We also used this algorithm to perform task de
omposition in modular neuralnetworks for 
lassi�
ation problems. i





Resumo
Desde os anos 80 que o 
on
eito de entropia e medidas rela
ionadas se apli
ama sistemas de aprendizagem tendo-se assistido à apli
ação destes a problemasde independent 
omponent analysis e blind sour
e separation. Trabalhos pos-teriores que usam a entropia e a informação mútua em redes neuronais estãofundamentalmente rela
ionados 
om problemas de regressão e predição.No trabalho que aqui apresentamos, usamos a entropia de duas formas dis-tintas: primeiro, 
omo função de 
usto em redes neuronais (per
eptrão multi-
amada) para problemas de 
lassi�
ação; segundo, 
omo base para um novamedida entrópi
a para 
lassi�
ação não supervisionada (
lustering).Relativamente à nova função de 
usto, mostramos 
omo usar a entropiaquadráti
a de Rényi dos erros entre a saída do per
eptrão multi-
amada e asrespe
tivas etiquetas, 
omo função de 
usto em problemas de 
lassi�
ação: oalgoritmo de minimização da entropia do erro (EEM). Apresentamos tambémum 
onjunto de optimizações para este algoritmo, nomeadamente: a adopção deuma taxa de aprendizagem variável; a a�nação do parâmetro de suavização paraestimação do gradiente da entropia; as 
ondições para o uso de um algoritmo"bat
h-sequential" para treino das redes neuronais 
om o algoritmo EEM.No que respeita à 
lassi�
ação não supervisionada, apresentamos um algo-ritmo de 
lustering baseado numa nova matriz entrópi
a de dissemelhança queserve 
omo base para um novo pro
esso de 
lustering, ao qual 
hamamos LEG-CLust. Também usamos este novo algoritmo para efe
tuar a de
omposição detarefas para redes neuronais modulares em problemas de 
lassi�
ação.iii





Résumé
Le 
on
ept d'entropie et les mesures relationnés s'appliquent à des sistémesd'apprentissage depuis les années 80, prin
ipalement à des problèmes d'analysede 
omponents independents et de séparation aveugle de sour
es. Des travauxpostérieurs qui usent l'entropie et l'information mutuelle en réseaux de neuronesarti�
iels sont relationnés ave
 la régression et la prédi
tion.Dans 
ette thèse, on use l'entropie ave
 deux perpe
tives distin
tes: 
ommeune fon
tion de 
oût des réseaux de neurones (per
eptron multi
ou
he) pour desproblèmes de 
lassi�
ation supervisée, et 
omme base pour une nouvelle mesureentropique pour des problèmes de 
lassi�
ation non supervisée.Relationné ave
 la nouvelle fon
tion de 
oût, on présente i
i 
omme utiliserl'entropie quadratique de Rényi des erreurs entre la sortie du réseaux de neu-rones et les étiquettes 
omme fon
tion de 
oût: l'algorithme de la minimiza-tion de l'entropie de l'erreur (EEM). Nous présentons aussi quelques méthodesd'optimization de l'EEM, à savoir: 
omme utiliser un 
oe�
ient d'apprentissagevariable approprié; 
omme ajuster le fa
teur d'aplanissage en 
al
ulant le gradi-ent de l'entropie; et les 
onditions pour appliquer un algorithme "bat
h-sequential"pour l'entrainement du per
eptron multi
ou
he ave
 l'algorithme EEM.Ce qui 
on
erne la 
lassi�
ation non supervisée, nous présentons un algo-rithme pour "
lustering" basé dans une nouvelle matri
e de dissimilitude. Cettematri
e est la base pour la nouvelle méthode de "
lustering" qu'on a noméeLEGClust. On use aussi LEGCLust pour é�e
tuer la dé
omposition de tâ
hesdans les réseaux de neurones modulaires pour des problèmes de 
lassi�
ation.v
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Chapter 1
Introdu
tion
One 
an probably state that the modern era of 
lassi�
ation theory has its rootson the work of Thomas Bayes and his famous theorem [16℄. However, as weknow, any kind of progress is based on previous knowledge and new develop-ments wouldn't be possible without the a

omplishments of our ante
essors.The foundations of 
lassi�
ation 
an be viewed both from a philosophi
al andmathemati
al point of view. Plato and Aristotle, who distinguish between an"essential property" (whi
h would be shared by all members in a 
lass) froman "a

idental property" (whi
h 
ould di�er among members in the 
lass) [42℄were perhaps the �rsts to attempt a 
oherent view of questions 
on
erning hu-man understanding that led to 
lassi�
ation theory. Later, other philosopherslike William of O
kham with the 
on
ept that is now known as "O
kham's ra-zor" and René Des
artes who added the rigor of mathemati
s by his strongdependen
y upon dedu
tive reasoning, provided the basis for the emergen
e of
lassi�
ation theory to be developed by mathemati
ians. Given that the Bayestheorem is a ratio of probability density fun
tions, there is a 
onne
tion between
lassi�
ation and probability theory, whose initial development roughly span thetime of Pas
al to Lapla
e. In Fig. 1.1 we 
an see a time window of the basi
foundations of modern 
lassi�
ation theory.Classi�
ation of obje
ts is probably one of the most 
ommon and an
ient1
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Figure 1.1: Time window of 
lassi�
ation theory foundations.de
ision tasks performed by humans. It 
an be seen as the ability of assigninga spe
i�
 obje
t to a prede�ned group or 
lass based on a number of observedattributes of that obje
t. The 
lassi�
ation pro
ess was primarily related to ournatural senses: humans re
ognize or 
lassify obje
ts based on the data a
quiredby their natural sensors. The te
hnologi
al evolution allowed us to developsophisti
ated sensors and the 
onsequent a
quisition of more 
omplex signals.On the other hand by using mathemati
al tools one 
an transform the originaldata 
hara
teristi
s and obtain other derived features. In Fig. 1.2 we presentthe di�erent steps involved in a 
lassi�
ation problem. The data 
olle
ted bythe sensors is 
onverted to spe
i�
 features that are the input for the 
hosen
lassi�
ation method.New algorithms and new strategies for 
lassi�
ation were ne
essary due tothe emerging of more 
hallenging and 
omputationally demanding appli
ationsin several �elds su
h as: bioinformati
s; data mining; biometri
 identi�
ation;spee
h re
ognition; do
ument, image and video analysis and 
lassi�
ation; in-dustrial automation; 
redit s
oring.Nowadays there are a huge variety of data 
lassi�
ation methods. The most
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collect data

choose features

choose model

train classifier

evaluate classifier

start

endFigure 1.2: S
hemati
 view of the 
lassi�
ation pro
ess.Table 1.1: Some of the most used 
lassi�
ation methods.Based on probabilisti
 rules Not based on probabilisti
 rulesFisher's linear dis
riminant K-nearest neighborNaive Bayes 
lassi�er Fuzzy logi
 
lassi�ersDe
ision trees Support ve
tor ma
hinesBayesian networks Neural networksMarkov models
ommon ones are presented in Table 1.1.Neural networks (NN) have emerged as important tools for data 
lassi�
a-tion. The extensive use of these models has proved that they represent a validalternative to various 
onventional 
lassi�
ation methods. Neural networks areused in �elds su
h as fun
tion approximation, regression analysis, time seriespredi
tion, data pro
essing, �ltering, 
ompression, blind signal separation or
lustering. The advantages of neural networks lie in the following aspe
ts:1. Neural networks are universal approximators [37℄.2. Neural networks are (usually) highly nonlinear ma
hines.



4 CHAPTER 1. INTRODUCTION3. Neural networks are adaptive, model-free ma
hines.4. Neural networks 
an estimate Bayesian a posteriori probabilities.Neural networks have been su

essfully applied to real world 
lassi�
ation tasksin �elds su
h as medi
al diagnosis, business, pattern re
ognition or bio-informati
s.They have also been applied to predi
tion and 
ontrol problems.Early works on neural networks were mainly 
on
erned with investigatingthe mean-square-error (MSE) and other se
ond-order statisti
s as optimality
riteria. This was due to the fa
t that initial resear
h on linear systems usedthe se
ond-order optimality 
riteria be
ause its quadrati
 performan
e surfa
epermits to obtain analyti
al expressions for the optimal solution, allowing the-oreti
al analysis of the learning pro
ess. The results obtained with MSE werealso very satisfa
tory when the s
ienti�
 
ommunity started to apply it on non-linear systems. These good results and the belief that the se
ond-order 
riterionwas su�
ient (supported by the 
entral limit theorem), made this 
riterion themain fo
us of interest for some de
ades. However, by the arising of more 
om-plex problems like those involving blind sour
e separation (BSS) or independent
omponent analysis (ICA), resear
hers understood that higher order statisti
sshould be used to des
ribe properly these pro
esses.In 1948, Shannon [174℄ introdu
ed what is 
onsidered one of the most im-portant a
hievements in 
ommuni
ation systems: the 
on
ept of informationentropy. His work was the foundation of a new resear
h area 
urrently known asinformation theory. This appealing new bran
h of mathemati
s attra
ted sev-eral resear
hers that produ
ed 
ontributions both in theoreti
al and pra
ti
alaspe
ts. Alfred Rényi [154, 155℄ was probably the one produ
ing the most im-portant 
ontribution by showing that Shannon's information theoreti
 quantitieswere spe
ial 
ases of a more general family of de�nitions: Rényi's entropy andRényi's mutual information.Although the information measures were originally adopted in 
ommuni
a-tion systems it is su
h a fundamental 
on
ept that it has been widely applied



1.1. MOTIVATION AND OBJECTIVES 5in areas su
h as physi
s, 
hemistry, 
omputer s
ien
e, neuros
ien
e, e
onomi
s,biology, psy
hology and linguisti
s. The appli
ation of Shannon's informationtheory to learning systems started in the late 1980s when Linsker presented theprin
iple of maximum information preservation (InfoMax) [122℄ that 
onsists onthe maximization of the mutual information between the output and the inputof the network so that the information about the input is best preserved in theoutput. In the 1990's several resear
hers draw their attention to the appli
ationof Shannon's information-theoreti
 measures to ICA and BSS namely by intro-du
ing the prin
iple of maximum entropy and the prin
iple of minimum mutualinformation [9, 18, 118, 201, 202℄.In the late 1990's early 2000's, Prín
ipe and his 
o-workers have appliedRényi's entropy and other related optimality 
riteria to problems of BSS, blind
onvolution and equalization, feature redu
tion, ICA and time series predi
tion[45, 46, 55, 150�152, 197℄.1.1 Motivation and Obje
tivesIt was the in�uen
e of the above mentioned works of Prín
ipe, Xu and Erdogmus,that led us to the attempt of applying entropy to data 
lassi�
ation problems.Sin
e we worked with neural networks we �rst tried to use the entropy as 
ostfun
tion in multi-layer per
eptrons (MLP). We knew that the usual MSE wasnot the most appropriate for neural network 
lassi�
ation problems sin
e this
ost fun
tion assumes that the errors (di�eren
e between the output of the neuralnetwork and the desired targets) are Gaussian distributed 1, and that is de�nitelynot the 
ase in 
lassi�
ation problems. By using the new entropi
 
ost fun
tionwe expe
ted to a
hieve better results in data 
lassi�
ation sin
e we were notlimited by the se
ond-order statisti
s of the MSE.In a later stage of our work we tried to apply entropy to unsupervised 
las-1This Gaussian distributed assumption is related with the maximum likelihood prin
ipleand the 
entral limit theorem.



6 CHAPTER 1. INTRODUCTIONsi�
ation (
lustering), in the form of a new 
lustering algorithm. We aimed todevelop this new 
lustering algorithm supported in a new dissimilarity matrixnot based on typi
al distan
e measures. As our �nal goal we intended to usethe developed algorithms in data 
lassi�
ation with Modular Neural Networks(MNN), namely by performing an entropi
 task de
omposition and by using theentropi
 
ost fun
tion and the related optimization pro
edures in 
lassi�
ationproblems.1.2 ContributionsThe main 
ontributions of this resear
h are:
• The use of Rényi's quadrati
 entropy of the errors as 
ost fun
tion in 
las-si�
ation problems with MLP's, and the Error Entropy Minimization Algo-rithm (EEM). A theoreti
al result is presented to this respe
t [164℄.
• Several optimization pro
edures for the EEM algorithm, namely:� An appropriate adaptive learning rate [169℄.� Tuning the smoothing parameter when performing entropy gradient
omputation [167℄.� A bat
h-sequential algorithm for neural network training with the EEMalgorithm [166℄.
• A new entropi
 dissimilarity matrix for 
lustering [168℄.
• A new 
lustering pro
ess based on the previous matrix, whi
h we 
alledLEGClust [168℄.
• The appli
ation of the LEGClust algorithm to perform task de
ompositionin modular neural networks for 
lassi�
ation problems (illustrated with sev-eral experiments) [165℄.



1.3. THESIS OUTLINE 71.3 Thesis OutlineIn Chapter 2 we give an overview of the basis of neural networks and an intro-du
tion to the 
on
ept of entropy and its estimation. We use this introdu
tionalso to present some notation.In Chapter 3, �Error Entropy Minimization Algorithm�, we present an algo-rithm for neural network training (namely multi-layer per
eptrons) based on anentropi
 
ost fun
tion for data 
lassi�
ation. We also present some optimizationpro
edures to a
hieve a more a

urate and faster 
onvergen
e.Unsupervised 
lassi�
ation, or 
lustering, with entropi
 
riteria is presentedin Chapter 4 where, after presenting an introdu
tion to 
lustering and to themost popular 
lustering algorithms, we introdu
e a new 
lustering algorithmbased on subgraphs with an entropi
 dissimilarity measure.In Chapter 5 we apply, to 
lassi�
ation problems, our new entropi
 
lusteringalgorithm for the task de
omposition phase of modular neural networks.The 
on
lusions are drawn in Chapter 6, where we also present some futureresear
h dire
tions.In Appendix A the most important 
hara
teristi
s of all the real data setsused in this work are listed (arti�
ial data sets are in
luded in the running text).A work on human 
lustering of bi-dimensional arti�
ial data sets is presentedin Appendix B. This work served as motivation to develop our new 
lusteringalgorithm.





Chapter 2De�nitions and Ba
kground
Sin
e one of the purposes of this work is the appli
ation of neural networks withentropi
 
riteria to supervised 
lassi�
ation, we start by presenting a review onneural networks and on the most important topi
s related to them, followedby an introdu
tion to entropy, information theory and entropy estimation. InSe
tion 2.1 we present the basi
s of neural networks and in Se
tion 2.2 the basi
sof entropy and related 
on
epts.2.1 Basi
s of Neural NetworksArti�
ial Neural Networks or simply Neural Networks, also known as 
onne
tion-ist models, are based on the attempt to mimi
 our nervous system, namely byusing stru
tures with a large number of identi
al and inter
onne
ted 
omputa-tional elements (neurons), trying to a
hieve similar problem solving strategies asthe human brain. Neural networks are model-free ma
hines possessing universalapproximation 
apabilities. A possible de�nition of a neural network presentedby Haykin in [80℄ is:A Neural Network is a massively parallel distributed pro
essor made upof simple pro
essing units, whi
h has a natural propensity for storingexperiential knowledge and making it available for use. It resemblesthe brain in two respe
ts: 9



10 CHAPTER 2. DEFINITIONS AND BACKGROUND1. Knowledge is a
quired by the networks from the environment througha learning pro
ess.2. Interneuron 
onne
tion strengths, known as synapti
 weights, areused to store the a
quired knowledge.Neural networks have advantages over 
lassi
al statisti
al approa
hes espe-
ially when the training set size is small 
ompared with the dimensionality ofthe problem to be solved and the underlying data distribution is unknown.The �rst mathemati
al model of a neural network was presented by M
Cul-lo
h and Pitts [132℄, a neurophysiologist and a logi
ian, based on their under-standing of the nervous system. This was a very simple model of the neuronfun
tion. In the following years many resear
hers, following this model, tried touse 
omputer simulations to apply it. The 
lose 
onta
t between engineers, neu-rophysiologists and even psy
hologists, made possible some notable progressesin the �eld. In 1958, Rosenblatt [158℄ introdu
ed one of the fundamental foun-dations of neural networks, the Per
eptron. The per
eptron was able to learn, to
onne
t or asso
iate a given input to a random output unit. It had three layers,with the middle one known as asso
iation layer. This innovation be
ame 
learwhen Rosenblatt demonstrated the Per
eptron Convergen
e Theorem [159℄. Thistheorem says that if there is a set of weighted 
onne
tions of a per
eptron, su
hthat the per
eptron gives the desired responses for a set of stimulus patterns,then after a �nite number of presentations of the stimulus-response pairs andappli
ations of the training pro
edure, the per
eptron will 
onverge to that setof weights whi
h would enable it to respond 
orre
tly to ea
h stimulus in the set.Meanwhile in 1960, another system was developed by Widrow and Ho� [194℄ whoemployed the Least Mean Square (LMS) learning rule: the ADALINE (ADAp-tive LInear Element).In 1969 Minsky and Papert [135℄, allegedly following a 
onne
tionists 
am-paign against the neural network followers, published a book in whi
h they ar-gued that there were a number of fundamental problems with per
eptrons. They



2.1. BASICS OF NEURAL NETWORKS 11said that the per
eptron was unable to perform 
ertain tasks, su
h as the 
al-
ulation of topologi
al fun
tion of 
onne
tedness (problem of telling 
onne
tedpatterns from dis
onne
ted ones). These limitations proved to be parti
ularlysigni�
ant, as they showed that a per
eptron 
ould not learn to evaluate thelogi
al fun
tion of ex
lusive-or (XOR). They also asserted that per
eptrons andtheir possible extensions were a "sterile" dire
tion of resear
h. This 
aused thestagnation of neural network resear
h and a 
onsequent period of disrepute.Despite the la
k of funding for neural network resear
h in the followingyears some authors have presented a few new ideas. Examples are the worksby Amari [8℄, Little and Shaw [124℄, Paul Werbos [193℄, Hop�eld [82, 83℄, Ko-honen [112℄, A
kley, Hinton and Sejnowski [1℄, Grossberg [66, 67℄ and Rumel-hart [161℄. In fa
t, Rumelhart's work was one of the most important events inthe renaissan
e of network models. He worked in the ba
k-propagation algo-rithm for multi-layer per
eptrons �rst introdu
ed by Paul Werbos in his 1974PhD Thesis. Sin
e then, a lot of resear
h has been done in this �eld. Neural net-works are, nowadays, extensively used in appli
ation �elds su
h as Engineering,E
onomi
s, Biology, Chemistry, Medi
ine, So
ial S
ien
es, et
.2.1.1 The Neuron ModelAs we said earlier, a neural network is a parallel distributed pro
essor made upof simple pro
essing units. These basi
 information-pro
essing units are knownas neurons. A diagram of a neuron is shown in Fig.2.1. This neuron is made ofthree basi
 
omponents:1. A set of 
onne
tions from the input signals to the summing jun
tion, ea
hone with an asso
iated weight. The 
onne
tion between input signal xj andneuron k is weighted by wkj. The �rst subs
ript of wkj will always referto the neuron and the se
ond to the input signal origin of the 
onne
tion.These weights 
an have any positive or negative value.2. The summing of the input signals weighted by the respe
tive 
onne
tions.
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Figure 2.1: A nonlinear model of a neuron.3. An a
tivation fun
tion, also known as squashing fun
tion, responsible forlimiting the amplitude of the output yk of the neuron. The usual amplitudeof the output neuron is a 
losed interval [−1, 1] or [0, 1].The extra input signal x0 is permanently set to unity.The neuron is des
ribed by the following equation:
yk(x) = ϕ(uk) = ϕ









n
∑

j=1

wkjxj



+ wk0



 , (2.1)where x1, x2, ..., xn are the input signals, wk1, wk2, ..., wkn are the weights ofneuron k, wk0 is the bias, ϕ(.) is the a
tivation fun
tion and yk is the outputsignal of the neuron. If we de�ne w∗ as ve
tor (wk1, wk2, ..., wkn)T and x∗ asve
tor (x1, x2, ..., xn)T we 
an represent equation 2.1 as:
yk(x) = ϕ(uk) = ϕ

(

w∗
Tx∗ + wk0)

)

. (2.2)Equation 2.1 
an be simpli�ed if one in
ludes wk0 in ve
tor w∗. Let w =

(wk0, wk1, ..., wkn)T and x = (x0, x1, ..., xn)T . The output of the neuron is nowde�ned by:
yk(x) = ϕ(uk) = ϕ

(

wTx
)

. (2.3)



2.1. BASICS OF NEURAL NETWORKS 13The mentioned bias term, wk0, also known as threshold, (this bias has noth-ing to do with the statisti
al bias) is used to allow the transformation of thelinear 
ombination of the input signals and the weights. This transformationdetermines the position of the hyperplane de�ned by the linear 
ombination. InFig. 2.2 we 
an see an example of a linear de
ision boundary (hyperplane) in a2-dimensional input spa
e. The bias de�nes the position of the plane in termsof its perpendi
ular distan
e to the origin.
1x

2x 0
)

(xy

*

0

w

w

*w

Figure 2.2: The weight ve
tor w∗ de�nes the orientation of the de
ision plane
y(x) = 0, while the bias w0 de�nes the position of the plane in terms of itsperpendi
ular distan
e to the origin.The simple neuron 
an be viewed as a simple dis
riminant fun
tion. One 
an
ombine multiple neurons like in Fig. 2.3, to obtain a multi-
lass dis
riminantfun
tion for a problem of c 
lasses. In this 
ase we get a 
ombination of de
isionboundaries that is always simply 
onne
ted and 
onvex.2.1.2 A
tivation Fun
tionsThe a
tivation fun
tion, ϕ(u), usually a monotoni
 and bounded fun
tion, isjust a fun
tion that is used to introdu
e nonlinearity in the network. Examplesof a
tivation fun
tions are presented in Fig. 2.4.
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Figure 2.3: A multiple output neural model.
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(b) Logisti
 sigmoid fun
tionwith a = 1. −4 0 4
−1

0

1

(
) Tanh sigmoid fun
tionwith a = 1.Figure 2.4: The three most popular a
tivation fun
tions.The step fun
tion, also known as Heaviside or threshold fun
tion is de�nedby:
ϕ(u) =











1 if u ≥ 0

0 if u < 0

. (2.4)With this a
tivation fun
tion the output of the neural network is 1 if ukis nonnegative, and 0 otherwise. The neuron model with the step fun
tion,�rst introdu
ed by M
Cullo
h-Pits, and posteriorly developed by Rosenblatt, isknown as Per
eptron.



2.1. BASICS OF NEURAL NETWORKS 15The logisti
 sigmoid fun
tion, de�ned as:
ϕ(u) = sig(u) =

1

1 + e−au
(2.5)and the tanh sigmoid fun
tion, de�ned as:

ϕ(u) = tanh(u) =
eau − e−au

eau + e−au
, (2.6)are both S-shaped 
urves and the two most used a
tivation fun
tions in neuralnetworks. Parameter a 
ontrols the slope of the 
urves. The outputs of the neuralnetworks having logisti
 and tanh a
tivation fun
tions are in the intervals [0, 1]and [−1, 1], respe
tively. These two a
tivation fun
tions are di�erentiable in allthe domain with derivatives (for a = 1):

sig ′(u) =
e−u

(1 + e−u)2
= sig(u)(1 − sig(u)) (2.7)and

tanh ′(u) =
4

(eu + e−u)2
= 1 − tanh2(u). (2.8)Both sigmoidal fun
tions possess a linear behavior near the zero 
rossing anda similar behavior with the step fun
tion for higher values of u.Fun
tions su
h as tanh that produ
e both positive and negative values tendto yield faster training than fun
tions that produ
e only positive values su
has logisti
 sigmoid, be
ause of better numeri
al 
onditioning. On the otherhand, logisti
 sigmoid a
tivation fun
tion allows the output of the neural networkto be interpreted as posterior probabilities [21℄, providing more than a simple
lassi�
ation.In all our experiments with MLP's we use the tanh a
tivation fun
tion.2.1.3 Neural Networks Ar
hite
turesThe stru
ture of a neural network is related to the way neurons are 
onne
tedto ea
h other and with the learning algorithm. Depending on these di�erent
hara
teristi
s we will have two main groups of neural networks: networks with



16 CHAPTER 2. DEFINITIONS AND BACKGROUNDonly feedforward 
onne
tions and networks with both feedforward and feedba
k
onne
tions. In the �rst group we 
an in
lude the single layer neural network,the multi-layer neural network and the Kohonen network [112℄ and in the se
ondgroup we have the Hop�eld networks and other types of so-
alled re
urrent neuralnetworks.Single-layer and multi-layer neural networks are organized in layers of neu-rons. The most simple layered neural network is 
onstituted by the input nodesand a layer of output neurons. There are only 
onne
tions between the inputsand the output layer (not the opposite), hen
e information is pro
essed fromthe input to the output, reason for 
alling them feedforward neural networks.In Fig. 2.3 we represented a feedforward neural network with multiple outputs.This neural network has a single layer of neurons (single-layer feedforward neu-ral network or single-layer per
eptron). There are only 
onne
tions from inputnodes to output neurons. The term "single-layer" refers to the layer of the pro-
essing neurons. Input nodes are not 
onsidered to be a layer be
ause they aren'tinvolved in any pro
essing.One 
an have more 
omplex layered neural networks by adding more layers ofneurons building a multi-layer feedforward neural network also known as multi-layer per
eptron (MLP). An example of su
h a neural network is depi
ted inFig. 2.5. This is a fully 
onne
ted neural network sin
e a neuron in any layerof the network is 
onne
ted with all the neurons/nodes of the previous layer.The output signals from the �rst layer are the inputs for the output layer. Thelayers between the input and output layers are known as hidden layers (neuronsin these layers are 
alled hidden neurons). In this work we use the notation
[a : b : c] to denote the stru
ture of a neural network with one hidden layer. Inthis notation the �rst parameter, a, designates the number of inputs, the lastparameter, c, the number of output neurons and the intermediate parameter, b,the number of hidden neurons in the hidden layer (for more than one hiddenlayer we have more than one intermediate parameter).
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Figure 2.5: A [6:3:2℄ multi-layer per
eptron with one hidden layer.Multi-layer per
eptrons are 
apable of more 
omplex mappings than single-layer per
eptrons. In Fig. 2.6 we show the types of regions that one 
an getfrom the use of di�erent kinds of single- and multi-layer per
eptrons havingthreshold a
tivation fun
tions. A single-layer per
eptron 
an only implement alinear dis
riminant produ
ing an hyperplane as de
ision boundary. A multi-layerper
eptron with one hidden layer is able to generate an open or 
losed 
onvexregion in the input spa
e, whose boundary are segments of hyperplanes. This
onvex region is obtained with the ability of the hidden layer to perform anAND operation. To get non-
onvex and/or disjoint regions we must add a layerto perform the OR operation. Multi-layer per
eptron with two hidden layersand threshold a
tivation fun
tions are 
apable of de�ning arbitrary regions.The explanation of the mapping 
apability of multi-layer per
eptrons basedon the properties of the operation AND and OR is just a simple proof of theirability to map any region of the input spa
e. However, by relaxing some of the
onditions, any given arbitrary de
ision boundary 
an be approximated arbitrar-ily 
lose by a two-layer (one hidden layer) network having sigmoidal a
tivationfun
tions [21℄. For this reason we will use in all our experiments (if not statedotherwise) this kind of multi-layer per
eptrons with one hidden layer and sigmoid
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Figure 2.6: Types of de
ision regions that 
an be obtained with single- andmulti-layer per
eptrons with one or two layers of hidden units. (from [123℄)a
tivation fun
tions.In the other group of neural networks the information pro
essing 
an beoperated not only in a feedforward way but also with feedba
k 
onne
tions.Information pro
essing 
an be made from the output to the input, as in theHop�eld networks [82, 83℄ without self-feedba
k, or even with a self-feedba
k,as in re
urrent neural networks [7, 101, 195℄, with time-delay units. These timedelayed feedba
k 
onne
tions allow the neural networks to exhibit a non-lineardynami
al behavior with memory properties.2.1.4 Neural Network LearningLearning is what de�nes a neural network, it's the "reason" of its existen
e.Neural networks are 
apable of learning from the environment and to improvetheir performan
e through learning. The neural network learns from the inputdata and, over time, and a

ording with some measures, it adjusts its weightsand bias in order to a
hieve a better performan
e. The learning pro
ess startswith the a
quisition by the neural network of the data re�e
ting the environment.Afterwards and a

ording to some rules the neural network adjusts its weights in
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ordan
e to the inputs and a performan
e 
riteria. By 
ontinuously 
he
kingthe inputs and the learning state, the neural network is 
apable of rea
hing thebest possible performan
e for the family of fun
tions it is able to implement. Theset of rules on whi
h the neural network bases its learning is 
alled the learningalgorithm. There is a variety of learning algorithms, ea
h one o�ering its ownadvantages. A

ording to [80℄, there are �ve basi
 learning rules: error-
orre
tionlearning, memory based learning, Hebbian learning, 
ompetitive learning andBoltzmann learning (error-
orre
tion learning is the one that we are going todis
uss with more detail). Learning 
an also be done in a supervised (learningwith a tea
her) or unsupervised (learning without a tea
her) way. Supervisedlearning assumes that the desired output data (target data) is supplied togetherwith the input data.
2.1.4.1 Error-
orre
tion learningLet us suppose we have a neural network like the one depi
ted in Fig. 2.7, havingone or more layers, and a single output neuron and that the desired response ortarget for that output neuron is dk(n). Let us denote yk(n) the output signal ofneuron k at iteration n. Suppose that

)(nek

)(nyk

)(ndk

Figure 2.7: The error-
orre
tion learning.



20 CHAPTER 2. DEFINITIONS AND BACKGROUNDThe error between the desired target dk(n) and the output signal yk(n) is:
ek(n) = dk(n) − yk(n). (2.9)The learning pro
ess a
ts by adjusting the weights of the neural networkin su
h a way that the output of the neuron be
omes more and more 
lose tothe desired target. This adjustment 
an be made, for example, by doing theminimization of an error fun
tion E(n) de�ned in terms of the error signal ek(n)as:

E(n) =
1

2
e2
k(n). (2.10)Learning is performed by adjusting the weights of the neural network untilwe rea
h a steady state where the minimum E(n) is obtained. The minimizationof this error fun
tion 
an be a
hieved by applying the well known delta rule orWidrow-Ho� rule [194℄. Let us 
onsider a single-layer neural network with lineara
tivation fun
tion where wkj(n) is the value of weight wkj of the 
onne
tionbetween neuron k and the element xj(n) of the input ve
tor x(n) at step n. Thedelta rule states that the adjustment ∆wkj(n) applied to weight wkj(n) at timestep n is de�ned by

∆wkj(n) = η ek(n)xj(n), (2.11)where η is a positive 
onstant determining the rate of learning when pro
essingfrom one learning step to another. Parameter η is known as the learning rateparameter.The update of the weight wkj, after 
omputing ∆wkj(n), is obtained by
wkj(n + 1) = wkj(n) + ∆wkj(n). (2.12)The learning rate is one of the most important parameters in the stability ofa 
losed-loop feedba
k system like the neural network depi
ted in Fig. 2.7. Thelearning rate must be 
arefully 
hosen so that the 
onvergen
e of the iterativelearning pro
ess is a
hieved.



2.1. BASICS OF NEURAL NETWORKS 21In the error-
orre
tion learning the weight adjustment 
an be made by propa-gating ba
kwards, layer by layer, the error signals originated at the output of theneural network. This is done using the Ba
k-propagation algorithm, probably themost popular method for NN training, that we will dis
uss later. Other popularmethods used to perform NN learning (weight adjustment) are the 
onjugate-gradient, the Levenberg-Marquardt and geneti
 algorithms.2.1.4.2 Cost Fun
tionsWe saw in the previous se
tion that the learning pro
ess 
an be made by adjust-ing the weights of the neural network in order to minimize an error fun
tion Ede�ned in terms of the error signal e = d − y. Error fun
tions are also knownas 
ost fun
tions 1 or obje
tive fun
tions. There are several 
ost fun
tions usedin NN, both for regression and 
lassi�
ation problems. In the following list wepresent the most used 
ost fun
tions [21℄ (we are still 
onsidering a NN with asingle output neuron.):Sum-of-squares error 1

2

N
∑

i=1

e2
i (2.13a)Minkowski error N

∑

i=1

|ei|R (2.13b)Mean Squared error (MSE) 1

N

N
∑

i=1

e2
i (2.13
)Cross-entropy error −

N
∑

i=1

[ti log yi + (1 − ti) log(yi)] (2.13d)
1The term 
ost fun
tion is used in optimization and is related to the problem of �nding anoptimal solution for a parti
ular problem. This optimal solution is obtained by minimizing ormaximizing a real fun
tion (
ost or obje
tive fun
tion) by systemati
ally 
hoosing the valuesof their real or integer variables.



22 CHAPTER 2. DEFINITIONS AND BACKGROUNDwhere ei = di − yi is the error for ea
h element i. The sum-of-squares error is aparti
ular 
ase of the Minkowski error (R=2).In this work we will show how to use an entropi
 
ost fun
tion in 
lassi�
ationproblems. This entropi
 
ost fun
tion is build by 
omputing the entropy of theerrors ei as des
ribed in the following 
hapter.The MSE is one of the most popular 
ost fun
tions used in 
lassi�
ationproblems with MLP's. The MSE, along with other indexes based on the squarederror, is also used to evaluate the performan
e of a neural network. Theseindexes are used to 
ompare the performan
e of di�erent neural network solu-tions. The following list presents the most used performan
e indexes (besidesthe MSE) [127℄:Error mean me =
1

N

N
∑

i=1

ei (2.14a)Absolute error mean m|e| =
1

N

N
∑

i=1

|ei| (2.14b)Relative error Erel =
1

N

N
∑

i=1

ei

xi
(2.14
)Root mean square (RMS) error ERMS =

√
MSE (2.14d)The error standard deviation

σe =
1

N − 1

√

√

√

√

N
∑

i=1

(ei − me)2 (2.15)is also used as a measure to evaluate the performan
e in regression problems.2.1.4.3 The Ba
k-propagation AlgorithmIn neural networks with di�erentiable a
tivation fun
tions the error ba
k-propagationmethod [161℄ is the most used for updating the neural network weights. It isa 
omputationally e�
ient method [21℄ that uses the derivatives of the error
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tion with respe
t to the network weights and biases. This method plays a
entral role in the majority of the training algorithms for multi-layer networks.Sin
e we use this method in our experiments we now present a brief explanation.We depi
t in Fig. 2.8, a simpli�ed signal �ow in a single-layer neural networkwith sigmoidal a
tivation fun
tion with fo
us on neuron k.
jx

kjw
)(nyk

)(ndk

)(nekFigure 2.8: The signal �ow and the ba
k propagated error (dot line) in asingle-layer per
eptron.Let ek(n) = dk(n) − yk(n) be the error between the output of neuron k andthe desired target at step n. As we saw earlier, we need a 
ost fun
tion toperform the learning task. Let us assume the squared error 
ost fun
tion de�nedin 2.10. To update the neural network weights we use the delta rule, a gradientdes
ent learning rule, to move through the "weight spa
e" of the neuron in stepsproportional to the gradient of the 
ost fun
tion with respe
t to ea
h weight.The delta rule for the wkj weight will be:
∆wkj(n) = −η

∂E

∂wkj
. (2.16)Noting that E is a fun
tion of yk(n) whi
h, on the other hand, is a fun
tion of

uk and therefore they depend on the weights (Equation 2.3), in order to 
ompute2.16, we apply the 
hain rule of derivation and obtain:
∆wkj(n) = −η

∂E(n)

∂wkj

= η δk(n)xj(n),

(2.17)where the lo
al gradient δk(n) is de�ned by
δk(n) = ek(n)ϕ′ (uk(n)) . (2.18)



24 CHAPTER 2. DEFINITIONS AND BACKGROUNDLet us now 
onsider a two-layer per
eptron with a simpli�ed representationin Fig. 2.9.
ix

jiw
)(ny j kjw )(nzk

)(ndk

)(nekFigure 2.9: The signal �ow and the ba
k propagated errors (doted lines) in atwo-layer per
eptron.To 
ompute the update for weight wkj, one must apply the same rule as forthe previous single-layer per
eptron. For the update of weight wji, one needs notonly the error ba
k propagated from neuron k, but also from all the neurons ofthe output layer. The error signal for a hidden neuron is determined re
ursivelyin terms of the error signals of all the output neurons to whi
h the hidden neuronis dire
tly 
onne
ted.Let us start by de�ning the lo
al gradient δj(n) for the hidden neuron j as:
δj(n) = −∂E(n)

∂yj(n)
ϕ′

j (uj(n)) . (2.19)To 
ompute the partial derivative ∂E(n)
∂yj(n) using all the information from theposterior neurons we must do

∂E(n)

∂yj(n)
=
∑

k

ek
∂ek(n)

∂yj(n)
, (2.20)whi
h, by applying the 
hain rule, is:

∂E(n)

∂yj(n)
= −

∑

k

ek(n)ϕ′
k(uk(n))wkj(n)

= −
∑

k

δk(n)wkj(n).

(2.21)Using 2.21 equation 2.19 
an now be written as:
δj(n) = ϕ′

j(vj(n))
∑

k

ek(n)ϕ′
k(uk(n))wkj(n) (2.22)



2.1. BASICS OF NEURAL NETWORKS 25and the update of weight wji(n) 
an be �nally obtained as follows:
∆wji(n) = η δj(n)xi(n). (2.23)2.1.4.4 The Learning rateWe have already mentioned that the learning rate is one of the most importantfa
tors when training a neural network. We also mentioned, in the previous se
-tion, that the ba
k propagation algorithm, by using a gradient des
ent approa
h,performs, in ea
h iteration, a lo
al des
ent in the error surfa
e. If the learningrate is small, we will obtain small 
hanges in the weights and, 
onsequently, anextremely smooth traje
tory in the error surfa
e. This 
an lead to a very slowlearning and, if the 
urvature of the error surfa
e is very smooth and 
hangingwith dire
tion, the lo
al gradient may not point towards the minimum, thusprodu
ing an even slower learning. On the other hand, if we use a large learningrate, we will have large 
hanges in the weights 
ausing big "jumps" in the traje
-tory in the error surfa
e produ
ing a highly errati
 learning. A suitable learningrate parameter must be 
hosen for ea
h experiment in order to avoid the men-tioned problems. Strategies to optimize this learning pro
edure were made byseveral authors, mainly with the assumption that the learning rate must 
hangealong the learning pro
ess; in other words, one should use an adaptive learningrate. The learning rate should be high in the beginning of the training pro
essand in the end one should use small learning rates in order to avoid getting outof the region near the global minimum. The adaptive learning rate is usuallybased on the following approa
hes:1. Start with a small learning rate and in
rease it exponentially if su

essive it-erations redu
e the error, or rapidly de
rease it if a signi�
ant error in
reaseo

urs [13, 192℄.2. Start with a small learning rate and in
rease it if su

essive iterations keepgradient dire
tion fairly 
onstant, or rapidly de
rease it if the dire
tion of



26 CHAPTER 2. DEFINITIONS AND BACKGROUNDthe gradient varies greatly at ea
h iteration [27℄.3. An individual learning rate is given to ea
h weight, whi
h in
reases if thesu

essive 
hanges in the weights are in the same dire
tion and de
reasesotherwise [92, 156, 177℄.4. Use a 
losed formula to 
al
ulate a 
ommon learning rate for all the weightsat ea
h iteration or a di�erent learning rate for ea
h weight [51,84,125,126℄.In Chapter 3 we shall present adaptive learning rates based on the approa
hes2 and 3, in the s
ope of neural networks trained with entropi
 
ost fun
tions.2.1.4.5 Training in Sequential and Bat
h ModeThe training of a neural network with the ba
k-propagation algorithm is per-formed by presenting a set of training examples from the data set of a parti
ular
lassi�
ation problem to the network. During the training phase, one 
ompletepresentation of the training set to the network is 
alled an epo
h. An usual pra
-ti
e to train a neural network is to maintain an epo
h-by-epo
h learning untilthere is a stabilization of the neural network weights and the 
onvergen
e of theerror fun
tion over the entire training set to a minimum value. However, and toavoid over-�tting 2, this pro
edure must be done with some 
aution. To avoidthe loss of generalization 
apabilities we must not overtrain the network. Somete
hniques to avoid this behavior are mainly based on early stopping 3; thismeans that one should stop training before the neural network has over �ttedthe training data.2Over-�tting is related with the bias/varian
e dilemma. When training a neural networkone 
an get a model with too little �exibility having high bias or a model with too mu
h�exibility having a high varian
e. A tradeo� between these two proprieties as to be a

omplishto obtain a model with good generalization 
apabilities. An extensive dis
ussion about thebias/varian
e dilemma 
an be found in [60℄.3We in
lude a brief dis
ussion about early stopping in the se
tion "Pra
ti
al Aspe
ts ofNeural Network Implementation"



2.1. BASICS OF NEURAL NETWORKS 27When applying the ba
k-propagation learning we 
an have two di�erentlearning modes:1. Sequential Mode. In this learning mode, also referred as Online or Sto
hasti
the weights update is performed ea
h time a new element from the trainingset is presented to the neural network. For ea
h new element x1, we 
omputethe error between the output y1 of the neural network and the desired target
d1, and we apply the ba
k-propagation algorithm to update the weights ofthe neural network. By doing this, we will have, for ea
h epo
h, as mu
hweights updates as the number of elements of the training set. The ba
k-propagation algorithm presented earlier was denoted as a sequential modealgorithm.2. Bat
h Mode. In this learning mode, the ba
k-propagation weights updateis performed after presenting all elements of the training set to the neuralnetwork and 
omputing the respe
tive error fun
tion. If using the meansquared error E (2.14d) the delta rule, similar to 2.17, will be de�ned, forthe weight of the 
onne
tion between node/neuron j and neuron k as:

∆wkj(n) = −η
∂E

∂wkj

=
η

N

N
∑

n=1

δk(n)xj(n).

(2.24)In bat
h mode learning we will have, for ea
h epo
h, a single update of theweights.Ea
h of the presented learning modes have advantages and disadvantages;with bat
h mode, by estimating a

urately the gradient ve
tor, the 
onvergen
eto, at least, a lo
al minima is guarantied. Also the algorithm is more easilyparallelized. On the other hand, for the sequential mode, it is more di�
ult toestablish theoreti
al 
onditions for 
onvergen
e due to its sto
hasti
 nature. Thesequential mode, however, requires less 
omputational memory, being preferredfor large data sets, and it is also preferred for data sets with some redundan
e.
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ti
al Aspe
ts of Neural Network ImplementationWe will present in this subse
tion some of the pra
ti
al aspe
ts related to thereal implementation of neural networks. We will dis
uss the normalization of thedata set, the splitting of the data set in training and test sets, the ar
hite
ture ofthe neural network, the stopping 
riteria and several other pra
ti
al 
onditions.Let us assume that the original data set was already pre-pro
essed and thatproblems with missing values and noise or outliers were already treated. Inother words, we assume that our data set is a "
lean" data set. The work ondata preparation for neural network data analysis in [203℄ presents a study onseveral aspe
ts regarding data pre-pro
essing.The �rst thing that usually one must do to this 
lean data set is to performa data normalization, or standardization, to avoid that higher inputs assumea more important role in the learning pro
ess than small inputs. The usualnormalization pro
esses transform the data so that:
• every feature of the data is s
aled in the interval [0, 1] or [−1, 1], or
• every feature is standardized to have zero mean and unitary standard devi-ation.The next step is to 
hoose the ar
hite
ture of the neural network. There isno rule spe
ifying the number of hidden layers and the number of neurons inea
h hidden layer. We mentioned earlier that a neural network with one hid-den layer 
an approximate arbitrarily 
lose any de
ision boundary, so, for mostproblems, a two-layer neural network will be su�
ient. A three-layer network
an be 
onsidered if a data set is parti
ularly hard to train. Although thereare some works suggesting formulas for determining the number of neurons inthe hidden layer (examples are [26, 59, 157, 170, 205℄), we still think that thereis nothing like experimentation. Experiments should be performed with a rangeof values for the number of hidden neurons that must be 
hosen taking into a
-
ount the 
omplexity of the problem. There are also some te
hniques 
onsisting



2.1. BASICS OF NEURAL NETWORKS 29on starting with a high 
omplex neural network and then, during training, per-forming a pruning by eliminating those weights with small in�uen
e (very lowvalue) [61, 105, 173, 182℄.As for the initial values for the weights and bias, we should use random smallvalues 4. This is done to prevent the possibility that some of the initial outputvalues 
ould be in the saturation region of the a
tivation fun
tion. As a
tivationfun
tions we use, in our experiments, the hyperboli
 tangent in all neurons.After 
hoosing the ar
hite
ture of the neural network and the initial weights,and before starting the training phase we will split the data set in two di�erentsubsets: the training set and the test set (some authors 
onsider the partition ofthe data set in training set, validation set and test set, however, we use the testset for validation and test). Training will be performed over the training set. Thetest set will be used, in our experiments, for validation and testing. The 10-fold
ross validation and the leave-one-out are the most used methods for splittingthe data set. In the �rst one, the data set is randomly split in 10 subsets being,in ea
h experiment, nine of them used for training and one used for testing. Theexperiment is repeated 10 times, ea
h time one of the 10 subsets being used astest set. In the se
ond method, the leave-one-out, all the data ex
ept one elementis used for training and the remain element is used for testing (the training isrepeated N times). In all our experiments we use a di�erent splitting method:a 2-fold 
ross validation (this was made for 
omparison purpose with the resultsobtained by the other elements of our resear
h group). In this method, ea
htime, half of the data set is randomly 
hosen for training and the other half fortesting. Then the data sets are used with inverted roles (the original training setbe
ame the test set and the original test set be
ame the training set). We mustpoint out that, di�erent splitting will, probably, originate di�erent �nal results.Classi�
ation errors using the 2-fold 
ross validation will, probably, be higherthan using the 10-fold 
ross validation.4In our experiments we use random values from a normal distribution with zero mean andunitary standard deviation, multiplied by 0.1.



30 CHAPTER 2. DEFINITIONS AND BACKGROUNDThere are several ways of stopping the training of a neural network. Wemay stop training when the error rea
hes a prede�ned small value, however, wewill probably have a neural network model too mu
h �tted to the training dataand that does not possess the generalization 
apability. To stop the trainingphase before this happens, we validate the model with the test set. In Fig. 2.10we represent the learning 
urves for training and testing/validation. Usually theneural network model does not do as well in the test set as it does in the trainingset used to build it. The training error 
urve de
reases monotoni
ally, as usual,as we in
rease the number of epo
hs (theoreti
ally we 
an get zero training errorif the network has enough 
omplexity). The model is validated periodi
ally inthe test set. The test error 
urve will monotoni
ally de
rease until a 
ertainpoint and then it will start in
reasing as training 
ontinues. Training should bestopped in a epo
h around the minimum test error. Early stopping is related to

Figure 2.10: Train error versus test error and the early stopping rule.the bias/varian
e trade-o� referred earlier.After training the neural network one has to test the obtained model on thetest data (if using test data for validation, the test is performed simultaneouslywith the training). In order to avoid the possibility of having rea
hed a lo
alminima in the training phase we will make several runs with di�erent initialweights. In ea
h experiment we usually perform 20 runs for ea
h 
ombination of



2.1. BASICS OF NEURAL NETWORKS 31the involved parameters. This number of runs, Nruns, is proposed in [89℄ if onewants to be 99% 
on�dent that the best-of-all runs (random starts) will resultin one of the best (lowest) 20% possible error values. This value is given by theformula:
Nruns =

ln(1 − Fw(a))

ln(1 − FX(a))
, (2.25)where Fw(a) is the level of 
on�den
e, and FX(a), the per
entage vi
inity of thelower tail of the distribution, whi
h the best-of-Nruns is expe
ted to provide.The �nal result of ea
h experiment will be the average of the errors of the

Nruns and also the respe
tive standard deviation. For ea
h run we 
ompute the
lassi�
ation error dividing the number of bad 
lassi�ed elements by the totalnumber of elements of the test set. The standard deviation is important when
omparing results obtained with di�erent models.One way to evaluate the errors in 
lassi�
ation problems is to build a 
onfu-sion matrix, a visualization tool used to see how the neural network is 
onfusedin the 
lassi�
ation of a 
ertain 
lass as another. In a 
onfusion matrix ea
h
olumn represents the instan
es in a predi
ted 
lass, while ea
h row representsthe instan
es in an true 
lass. An example of a 
onfusion matrix is shown inFig. 4.6There are other tools used to measure the performan
e of a neural network.A spe
ial tool for a two-
lass problem is the ROC 
urve (The Re
eiver OperatorChara
teristi
 
urve). It 
ombines the 
on
epts of sensitivity 5 and spe
i�
ity 6that depend on the arbitrary sele
tion of a de
ision threshold. The ROC 
urve isshown to be a simple yet 
omplete empiri
al des
ription of this de
ision thresh-5Sensitivity is a statisti
al measure of how well a binary 
lassi�
ation test 
orre
tly identi�esa 
ondition. In a medi
al test to determine if a person has a 
ertain disease, the sensitivity tothe disease is the probability that, if the person has the disease, the test will be positive. Thatis, the sensitivity is the proportion of true positives of all positive 
ases in the population.6Spe
i�
ity is a statisti
al measure of how well a binary 
lassi�
ation test 
orre
tly 
lassi�es
ases not belonging to that 
lass. In a medi
al test to determine if a person has a 
ertain disease,the spe
i�
ity to the disease is the probability that, if the person does not have the disease, thetest will be negative. That is, the spe
i�
ity is the proportion of true negatives of all negative
ases in the population.
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t, indi
ating all possible 
ombinations of the relative frequen
ies of thevarious kinds of 
orre
t and in
orre
t de
isions [134℄.2.2 EntropyThe 
on
ept of entropy originated from thermodynami
s is widely known fromits se
ond law, �rst stated by Rudolf Clausius. He introdu
ed the 
on
ept ofentropy in 1865 during the apogee of steam engines: it spe
i�ed the maximumenergy available for useful work. In a posterior stage, in statisti
al me
hani
s,Boltzmann stated his famous equation S = k ln W des
ribing the entropy (S)as the relation between the number of mi
rostates in a system (W ) and itsma
ros
opi
 properties (k is the Boltzmann 
onstant). Tsallis, in 1988, presenteda extension of the 
on
ept of entropy, stating that Boltzmann formula was notvalid for some rare events [36, 184℄:
Sq(p) =

1

q − 1

(

1 −
∑

x

pq(x)

)

. (2.26)In this 
ase, p is a probability distribution, and q is a real parameter. In thelimit as q → 1, the normal Boltzmann-Gibbs entropy is re
overed.Claude Shannon used the same term, entropy, when he introdu
ed his workabout 
ommuni
ations over a noisy 
hannel [174℄. He studied the statisti
alstru
ture of a message to be transmitted and the nature of the �nal destinationof the information. The �rst 
on
epts of information in 
ommuni
ations wereintrodu
ed by Nyquist and Hartley in the 1920's. In 1924 Nyquist showed thatthe speed W of transmission of information over a telegraph 
ir
uit, with a �xedline speed, is proportional to the logarithm of the number m of values used toen
ode the message: W = k log m where k is a 
onstant [143℄. Later, in 1928,Hartley generalized the 
on
ept and introdu
ed the measure of information for
ommuni
ation [74℄, the amount of information asso
iated with an event x whi
ho

urs with probability p, as I = log 1
p .Entropy has been used in a variety of appli
ations, s
attered through the large
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ien
e spe
trum. Examples are the appli
ations in information and 
oding the-ory, dynami
al systems, logi
 and theory of algorithms, statisti
al inferen
e andpredi
tion, physi
al s
ien
es, e
onomi
s, biology, humanities and so
ial s
ien
es.2.2.1 Entropy and InformationIn a 
ommuni
ation system, the information of a 
ertain event is higher as smalleris its probability of o

urren
e. In simple 
ases, the amount of information is
onveniently measured by the logarithm of the number of available 
hoi
es 7.Note that information here is not equivalent and must not be 
onfused withmeaning [185℄. The 
on
ept of information is too 
omplex and 
annot be ex-plained with a single de�nition. Two messages, one of whi
h is heavily loadedwith meaning and the other whi
h is pure nonsense, 
an be exa
tly equivalent asregards to our use of information. Information, in 
ommuni
ation theory, relatesnot so mu
h to what you do say, as to what you 
ould say. Information is one'sfreedom of 
hoi
e when one sele
ts a message [185℄. In this sense it is 
learlyrelated to the initial un
ertainty asso
iated to the message sele
tion.When an event is related to a previous one � when a message is produ
ed by
onse
utive symbols � the probability of o

urren
e of the various symbols at a
ertain stage of the pro
ess 
an be dependent on the previous one. The quantitythat measures the information of su
h a pro
ess must be expressed in termsof the various probabilities involved: those of getting to 
ertain stages of themessage forming pro
ess, and the probabilities that, when in those stages, 
ertainsymbols will be 
hosen next. This quantity, moreover, involves the logarithm ofprobabilities, so that it is a natural generalization of the logarithmi
 measure forsimple 
ases.Claude Shannon de�ned pre
isely entropy as how mu
h 
hoi
e is involved inthe sele
tion of a 
ertain event or how un
ertain we are of the out
ome. Shannon,in his famous 1948 paper [174℄, introdu
ed the 
on
ept of entropy and mutual7One of the reasons for using the logarithm is be
ause information should be additive:
I(ab) = I(a) + I(b).



34 CHAPTER 2. DEFINITIONS AND BACKGROUNDinformation, and laid the foundations to the new �eld of information theory.Sin
e then, some 
on
epts related to Shannon's entropy were presented, likerelative entropy that was �rst de�ned, in 1951, by Kullba
k and Leibler [116℄,and also some di�erent properties were found for these quantities, for example,Fano's inequality [49℄.Given a dis
rete random variable X taking values in the �nite set X =

{x1, x2, ..., xn} with probabilities p = (p1, p2, ..., pn), we de�ne the (Shannon)entropy of X to be the expe
tation of the Hartley's information measure:
H(X) = −K

n
∑

i=1

pi log2 pi , (2.27)where K is a positive 
onstant. The entropi
 measure
H(X) = −

n
∑

i=1

pi log2 pi , (2.28)(the 
onstant K is only related to the 
hoi
e of the unit of measure, the usedlogarithm) played an important role in information theory as a measure of in-formation, 
hoi
e and un
ertainty.Note that the entropy of X depends, not on the values of X, but on theirprobabilities; however we will use, as usual, H(X) as H(p).Originally Shannon used log2 and measured entropy in bits. From now onwe will use log, representing the natural logarithm.If X is a random variable with Bernoulli distribution that takes the value 0with probability 1 − p and the value 1 with probability p, the entropy is:
H(X) = −p log p − (1 − p) log(1 − p)). (2.29)As 
an be seen, for p = 0 or 1, there is no un
ertainty in the event (Xis deterministi
) and so is the entropy H(X) = 0. If p = 1/2, X will havethe highest un
ertainty and 
onsequently the highest value for the entropy is

H(X) = 1 (see Fig.2.11).Entropy possesses the following properties:



2.2. ENTROPY 351. H(X) ≥ 0. The equality holds if one of the probabilities is 1 and all theothers are 0.2. H(X) is a 
ontinuous fun
tion of p.3. H(X) is symmetri
. In other words, the ordering of the probabilities p1, p2, ..., pndoes not in�uen
e the value of H(X).4. The entropy of independent variables is additive. If X and Y are twoindependent variables with probabilities p and q then, for the entropy ofthe join event (X,Y ), we have H(X,Y ) = H(X) + H(Y ).5. H(X) ≤ log n, with equality i� p1 = p2 = ... = pn = 1
n .After Shannon other authors have presented other information entropy mea-sures having almost the same properties of the original one. Rényi presenteda generalized form of information measure based on a general theory of means,derived from the following axioms:1. the information of a 
ouple of independent individual events is the sum oftheir respe
tive information;

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

H

Figure 2.11: The entropy of a Bernoulli variable for di�erent p.



36 CHAPTER 2. DEFINITIONS AND BACKGROUND2. the information of a random variable is a (generalized) mean information ofthe individual event information;3. the information is additive for independent random variables.The generalized mean of the real numbers x1, x2, ..., xn with weights p1, p2, ..., pnhas the form
ϕ−1

(

n
∑

k=1

pk ϕ(xk)

)

, (2.30)where ϕ() is the Kolmogorov-Nagumo fun
tion [113, 139℄, whi
h is an arbitrary
ontinuous and stri
tly monotoni
 fun
tion de�ned on the real numbers.The entropy measure should be [154, 155℄
ϕ−1

(

n
∑

k=1

pk ϕ(I(pk))

)

. (2.31)To meet the additivity 
ondition, ϕ() 
an either be ϕ(x) = x or ϕ(x) =

2(1−α)x. If the �rst expression is used, 2.31 will be
ome Shannon's entropy 2.28.If the latter expression is used, Rényi's entropy [155℄ is obtained instead:
HRα =

1

1 − α
log

(

n
∑

k=1

pk
α

)

, α > 0, α 6= 1 . (2.32)This entropy measure is often known as a generalized information measure,information measure of order α, or simply α-order Rényi entropy.Rényi's entropy is a family of entropy measures and has the Shannon's en-tropy (HS) as a spe
ial 
ase. The relation between both entropies is de�nedby:










HRα ≥ HS ≥ HRβ if 0 < α < 1 and β > 1,

lim
α→1

HRα = HS

. (2.33)Rényi's entropy is the only entropy measure that satis�es the above three ax-ioms (in
luding, of 
ourse, Shannon's entropy as a parti
ular 
ase) [98℄. However,there are other measures of information that do not satisfy all the axioms butare still useful for some appli
ations. The Havrda and Charvat's entropy [79℄:
HHα =

1

1 − α
log

(

n
∑

k=1

pk
α − 1

)

, α > 0, α 6= 1, (2.34)



2.2. ENTROPY 37is an example of an entropy measure, similar to Rényi's entropy but with di�erents
aling, that does not satisfy the additivity axiom but is still equivalent to Rényiand Shannon entropies with regard to entropy maximization [104℄. Anotherexample of an entropy measure is also H∞ = − log
(

max
k

(pk)
) [104℄.2.2.1.1 Conditional, Joint and Mutual Information MeasuresIn the previous subse
tion we have de�ned the entropy of a single dis
rete randomvariable. The following measures extend the de�nition to a pair of dis
reterandom variables.Consider two dis
rete random variables X and Y taking values in the �-nite sets X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn} with probabilities p =

(p1, p2, ..., pn) and q = (q1, q2, ..., qm) respe
tively. We 
an see (X,Y ) as a 
om-pound probabilisti
 experiment with out
ome (xi, yi). Let us 
onsider r(xi, yi)as the joint probability, the probability that the 
ompound experiment (X,Y )will yield (xi, yi) as out
ome.As a straightforward generalization of 2.28 the joint Shannon's entropy of
(X,Y ) is de�ned as ( [35℄):

H(X,Y ) = −
n
∑

i=1

m
∑

j=1

r(xi, yj) log [r(xi, yj)] . (2.35)A straightforward extension is also the de�nition of the 
onditional entropyof a 
ertain r.v. Y , related to the probability of Y under the 
ondition thatout
ome xi has o

urred.
H(Y |xi) = −

m
∑

j=1

q(yj |xi) log [q(yj |xi)] . (2.36)Note that we use the 
onditional probabilities q(yj|xi), j = 1, 2, ...,m, insteadof probabilities q(yj), j = 1, 2, ...,m.The average 
onditional entropy of Y given X is obtained by averaging
H(Y |xi) over all the xi values as:
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n
∑

i=1

p(xi)H(Y |xi) = −
n
∑

i=1

m
∑

j=1

p(xi)q(yj |xi) log [q(yj |xi)] ;

H(Y |X) = −
n
∑

i=1

m
∑

j=1

r(xi, yj) log [q(yj|xi)] .The minimum and maximum values for the 
onditional entropy of Y given
X, H(Y |X) is given by the following inequalities:1. H(Y |X) ≥ 0;2. H(Y |X) ≤ H(Y ), with equality only if X and Y are independent.The main 
on
lusion about the se
ond inequality is that, on average, theinformation about X leads to a redu
tion of the un
ertainty of event Y . In 
ase
X and Y are independent, knowing X value does not help redu
ing the initialun
ertainty of Y . The same properties hold for H(X|Y ). For all r.v. X and Y ,

H(X,Y ) = H(X) + H(Y |X)

= H(Y ) + H(X|Y ). (2.37)Using 2.37 and the previous inequalities one easily derives:
H(X,Y ) = H(X) + H(Y |X) ≤ H(X) + H(Y ), (2.38)with equality only if events X and Y are independent. One 
an say that, if anabsolute dependen
e exists between the out
omes of Y and X (if Y is knownafter knowing X), the 
onditional entropy H(Y |X) = 0 and H(X,Y ) = H(X).Relative entropy and mutual information are two further 
on
epts relatedwith entropy whi
h are very important in information theory. Relative entropy,also known as the Kullba
k-Leibler divergen
e [116℄, is a measure of the dis-similarity between two distributions and is de�ned as the expe
tation of thelogarithmi
 likelihood ratio. Relative entropy is thus de�ned as:

D(p|q) =
∑

x

p(x) log
p(x)

q(x)
, (2.39)



2.2. ENTROPY 39where p(x) and q(x) are two probability mass fun
tions. Although sometimesmentioned as "Kullba
k-Leibler distan
e" this is not a true distan
e measurebetween two distributions sin
e it is not symmetri
 and does not satisfy thetriangular inequality. The relative entropy is used as a measure of ine�
ien
yof assuming that the distribution is q when the true distribution is p [35℄.Mutual information 
an be seen as a dependen
y measure between two ran-dom variables Y and X, or the amount of information that one random variable
ontains about another random variable. Mutual information is thus de�ned as:
I(X,Y ) = H(Y ) − H(Y |X)

= −
n
∑

i=1

m
∑

j=1

r(xi, yj) log
r(xi, yj)

p(xi)q(yj)
. (2.40)When X and Y are independent I(X,Y ) = 0. I(X,Y ) is symmetri
, that is

I(X,Y ) = I(Y,X) = H(X) − H(X|Y ). (2.41)The relationship between the presented information measures (di�erent en-tropies and mutual information) is shown in the Venn diagram of Fig.2.12. Theinterse
tion of the two 
ir
les will not o

ur in the 
ase of independent r.v. Xand Y .
H(X)

H(Y)

H(X|Y)

H(Y|X)
I(X,Y)

Figure 2.12: Relationship between information measures.The following relationships between information measures 
an be easily de-rived from the Venn diagram:



40 CHAPTER 2. DEFINITIONS AND BACKGROUND1. H(X|Y ) ≤ H(X) and H(Y |X) ≤ H(Y )2. I(X,Y ) ≤ H(Y ) and I(X,Y ) ≤ H(X)3. I(X,Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X)4. H(X,Y ) = H(X|Y ) + I(X,Y ) + H(Y |X) = H(Y ) + H(X|Y ) = H(X) +

H(Y |X)5. H(X,Y ) ≤ H(X) + H(Y )Until now we have just presented information measures and related propertiesfor dis
rete random variables. The equivalent formulas for 
ontinuous randomvariables are obtained in a straightforward way, substituting summations byintegrals and probability mass fun
tions by probability density fun
tions. Theentropies of 
ontinuous r.v. are sometimes known as di�erential entropies. Thisway, Shannon's (di�erential) entropy is:
H(X) = −

∫ +∞

−∞
f(x) log f(x) dx, (2.42)where f(x) is the probability density fun
tion (pdf) of r.v. X. Analogously, the

α-order Rényi di�erential entropy is:
HRα(X) =

1

1 − α
log

(∫ +∞

−∞
fα(x) dx

)

, α > 0, α 6= 1. (2.43)The se
ond-order Rényi's di�erential entropy,
HR2(X) = − log

(∫ +∞

−∞
f2(x) dx

)

, (2.44)will be used later and will be referred to as the Rényi's quadrati
 entropy dueto the quadrati
 form of the pdf.Di�erential entropy follows some important extremal properties:1. If the density f is 
on
entrated on a limited interval [a; b], then the di�er-ential entropy is maximal i� f is uniform on [a; b], and then H(f) = 0.



2.2. ENTROPY 412. If the density is 
on
entrated on the positive half line and has a �xed expe
-tation, then the di�erential entropy takes its maximum for the exponentialdistribution.3. If the density has �xed varian
e, then the di�erential entropy is maximumfor the Gaussian density.All the properties presented earlier, su
h as joint and 
onditional entropiesand mutual information, are also valid for di�erential entropies [35℄.2.2.2 Entropy EstimationHow 
an entropy be estimated from data? One might think that this problemhas already been 
on
lusively studied and understood. However, taking intoa

ount all the works presented sin
e Shannon's 1948 paper, it still is a 
urrentlyresear
hed subje
t espe
ially in what 
on
erns di�erential entropy.Several authors have presented expli
it expressions for the entropy of known
ontinuous probability distributions. An overview of some formulas for univari-ate densities 
an be found in [117℄ and for multivariate densities in [3, 64℄. Theentropy estimation problem is rather more di�
ult for unknown distributionsbe
ause one must estimate the probability density fun
tion and, when dire
tlyapplying formula 2.42, to use numeri
al integration. Before dis
ussing entropyestimation, we will present in the following two subse
tions the most used non-parametri
 methods to estimate the probability density fun
tion of a 
ontinuousrandom variable: the histogram-based estimator and the Parzen window estima-tor. See [129℄ for a review on nonparametri
 density estimation.2.2.2.1 Histogram-based Density EstimatorsA

ording to [181℄, the �rst histogram appeared in 1661, due to John Graunt, aLondon haberdasher, as an attempt to summarize the information 
olle
ted bythe parish priests of the Chur
h of England about the last 100 years births anddeaths, as was ordered by king Henry VIII, 
on
erned with the de
rease of the



42 CHAPTER 2. DEFINITIONS AND BACKGROUNDEnglish population 
aused by the plague. This �rst histogram 
ame about fromthe need to summarize the mountains of 
olle
ted data.Let us 
onsider a sample {x1, x2, ..., xn} of observations of an i.i.d. randomvariable X ∈ R, from an unknown absolutely 
ontinuous probability densityfun
tion g(x).The histogram-based density estimator is used to estimate the trun
ated 8density of g(x), f(x) (if g(x) has in�nite support) as
f(x) =















g(x)
∫ b

a
g(t)dt

x ∈ [a, b]

0 otherwise

. (2.45)Let us 
onsider the partition of the interval [a, b] by a = t0 < t1 < ... < ti <

... < tm = b and denote
Ti = [ti, ti+1[

qi =
∑n

k=1 Ixk∈Ti

l(Ti) = ti+1 − tiThe histogram is built by assigning to ea
h bin a height proportional to theprobability:
p(t) =



























qi/n t ∈ Ti;

qm−1/n t = b;

0 t /∈ [a, b]

. (2.46)The estimated density given by the histogram is therefore obtained by:
f̂H(t) =



























p(t)/l(Ti) t ∈ Ti;

p(t)/l(Tm−1) t = b;

0 t /∈ [a, b]

. (2.47)If f is bounded and has 
ontinuous derivatives up to order three, ex
ept atthe endpoints of [a, b], and we 
onsider equal spa
ing, ti+1 − ti = 2h(n) ≡ 2hn,8Given the �niteness of the available data sample only a trun
ated pdf estimation 
an bereliably performed.



2.2. ENTROPY 43then, if n → ∞ and hn → 0 su
h that nhn → ∞, for x ∈ [a, b], the followingholds 9 (see proof in [181℄):
MSE

(

f̂H(x)
)

= E
[(

f̂H(x) − fH(x)
)]

→ 0. (2.48)In other words, f̂H(x) 
onverges in the L2-norm to f(x) and, therefore, it isa 
onsistent estimator for f(x).2.2.2.2 Parzen Window Density EstimatorThe Parzen window estimator is a generalization of the shifted-histogram orRosenblatt's kernel estimator. Rosenblatt's approa
h is simply a histogramwhi
h, for estimating the density at x, has been shifted so that x lies at the
enter of a mesh interval. The Rosenblatt estimator is therefore given by ( [160℄)
f̂n(x) =

♯ sample points in (x − hn, x + hn)

2nhn
, (2.49)where hn is a real valued number 
onstant for ea
h n, i.e.,

f̂n(x) =
Fn(x + hn) − Fn(x − hn)

2hn
, (2.50)with

Fn(x) =
♯ sample points ≤ x

n
, (2.51)the empiri
al distribution of the data.The Rosenblatt estimator, as the histogram-based estimator, f̂H , is also a
onsistent estimate of f(x) [181℄.One 
an also represent Rosenblatt's shifted histogram estimator as:

f̂n(x) =
1

n

n
∑

j=1

1

hn
w

(

x − xj

hn

)

, (2.52)where w(u) =











1
2 if |u| < 1

0 otherwise

is a re
tangular kernel fun
tion.9Condition nhn → ∞ is used to guarantee that n 
onverges more rapidly to ∞ than hnto 0. These two parameters must be related in su
h a way that, when n grows, it must growfaster than the de
reasing of hn.



44 CHAPTER 2. DEFINITIONS AND BACKGROUNDA global optimal value for hn is presented in [181℄ and 
an be obtained fromthe integrated mean square error:
hn =

[

9

2
∫

(f ′′(x))2dx

]1/5

n−4/5. (2.53)Note that there is a faster de
rease in hn with the growth of n in su
h a waythat 
ondition nhn → ∞ is satis�ed.Although Rosenblatt suggested generalizing 2.52 to estimators using di�erentbases (kernels) than step (re
tangular) fun
tions, the detailed explanation andstudy of kernel estimators is due to Parzen [146℄. Parzen 
onsidered the estimatorfor f(x) as
f̂n(x) =

∫ ∞

−∞

1

hn
K

(

x − y

hn

)

dFn(y) ≃ 1

nhn

n
∑

j=1

K

(

x − xj

hn

)

, (2.54)where






























∫∞
−∞ |K(y) dy| < ∞

Sup
−∞<y<∞

|K(y)| < ∞,

lim
y→∞

|y K(y)| = 0

(2.55)and










K(y) ≥ 0

∫∞
−∞ K(y) dy = 1

. (2.56)If K is a Borel fun
tion 10, the kernel estimator f̂n in 2.54 subje
t to 2.55and 2.56 is asymptoti
ally unbiased if hn → 0 as n → ∞, i.e,
lim
n

E
(

f̂n(x)
)

= f(x). (2.57)The estimator f̂n in 2.54 subje
t to 2.55 and 2.56 is 
onsistent if we add theadditional 
onstrain lim
n→∞

nhn → ∞. Proofs of the previous theorems 
an befound in [181℄.10Borel fun
tions, also 
alled measurable fun
tions, are well-behaved fun
tions between mea-surable spa
es.



2.2. ENTROPY 45A global optimal value for hn obtained from the minimization of the inte-grated mean square error is:
hn = n− 1

2r+1 α(K) + β(f) (2.58)with
α(K) =

[

∫

K2(y) dy

2r
(∫

yrK(y)dy/r!
)2

]1/(2r+1) and
β(f) =

[
∫

|f (r)(y)|2 dy

]−1/(2r+1)

,where r is the 
hara
teristi
 exponent 11 of the kernel. If K is a probabilitydensity r 
annot be higher than 2, with r = 2 being the most important 
ase.Examples of kernels with 
hara
teristi
 exponents of 2 are the Gaussian kernel,the double exponential or any other symmetri
 kernel K having x2K(x) ∈ L1.Sin
e we assume the fun
tional form of K to be given, we 
an evaluate α(K)more or less easily. The determination of β(f) is fraught with di�
ulty be
ause
f(y) is unknown. Examples of values of α(K) for r = 2 are shown in Table 2.1.Table 2.1: α values for di�erent kernels with r = 2.

K α(K)

K(y) = 1/2 |y| ≤ 1 1.3510

K(y) = 15

16
(1 − y2)2 |y| ≤ 1 2.0362

K(y) = 1
√

2π
exp−y2/2 |y| < ∞ 0.7764In Parzen window estimation we are limited by the fa
t that β(f) is generallyunknown. One 
ould 
onsider to iteratively improve an estimation of β(f). Asan example we mention that, for a Gaussian density with standard deviation σ,we have:

∫

|f ′′(y)|2dy ≈ 0.212σ−5 ⇒ β(f) ≈ 1.3637 ⇒ hn ≈ 1.06σn−1/5. (2.59)11In fa
t, r is the 
hara
teristi
 exponent of k, the Fourier transform of the kernel K thatsatis�es 
onditions 2.55 and 2.56. If there exists a positive r, su
h that kr = lim
u→0

[

1−k(u)
|u|r

] isnonzero and �nite, r is 
alled the 
hara
teristi
 exponent of k.



46 CHAPTER 2. DEFINITIONS AND BACKGROUND(For now on and for the sake of simpli
ity we will use f̂(x) and h for f̂n(x) and
hn)Aware of the fa
t that kernel estimators are not, in general, robust againstpoor 
hoi
es of h [181℄, some authors have suggested some values for this param-eter based on formula 2.58. Examples are the ones proposed by Silverman, bothfor unidimensional 
ases [179℄: the mentioned value h = 1.06σn−1/5 (formula2.59), and also

h = 0.9An−1/5 where A = min

(

σ,
IQR

1.34

)

, (2.60)where IQR is the interquartile range. Also the one proposed by Bowman andAzzalini [24℄ for multidimensional 
ases and assuming normal distributions:
h = σ

(

4

(m + 2)n

)
1

m+4

, (2.61)where m is the ve
tor dimension (for m = 1, h = σ(4/3n)0.2, similar to formula2.59).However, the 
hoi
e of h (also known as smoothing parameter or bandwidth)is always limited by the bias-varian
e tradeo�: the bias 
an be redu
ed at theexpense of the varian
e, and vi
e versa. The bias of an estimate is the systemati
error in
urred in the estimation and the varian
e of an estimate is related to therandom error in
urred in the estimation. The bias-varian
e dilemma applied tothe 
hoi
e of h simply means that a large h will redu
e the di�eren
es amongthe estimates of f̂(x) for di�erent data sets (the varian
e) but it will in
reasethe bias of f̂(x) with respe
t to the true density. A small h will redu
e the biasof f̂(x), at the expense of a larger varian
e in the estimates f̂(x).The Parzen window estimator for multiple dimensions is:
f̂(x) =

1

n hd

n
∑

j=1

K

(

x − xj

h

)

. (2.62)We will return to the subje
t of the optimal value for h when dis
ussingRényi's entropy estimation in the next subse
tion.



2.2. ENTROPY 472.2.2.3 Di�erential Entropy EstimationAfter one of the �rst works in entropy estimation, in 1956, for dis
rete distribu-tions [12℄, this problem, less 
omplex than the estimation for 
ontinuous distribu-tions, was also analysed by several other authors [10,14,65,87,114,144,145,172℄;these works presented estimation methods, 
onvergen
e properties and studiedthe estimators 
omplexity and their statisti
al properties.Regarding 
ontinuous distributions, as we said earlier in this se
tion, someauthors have presented expli
it formulas for the entropy of known 
ontinuousprobability distributions. For unknown distributions the �rst proposed estima-tors for Shannon's entropy were presented in the seventies by Dmitriev [40℄,Ahmad [2℄ and Vasi
ek [186℄. Other entropy estimators, mostly based on theprevious ones, were presented in the following years [19, 34, 73, 115, 136, 188℄.Dmitriev [40℄ was the �rst to propose the integral estimator of the form
Hn = −

∫

An

fn(x) log2 fn(x) dx, (2.63)to estimate Shannon's entropy for d = 1. Ahmad [2℄ estimated the entropy usingthe resubstitution estimator
Hn = − 1

n

n
∑

i=1

ln fn(Xi) (2.64)and showed the 
onsisten
y of this estimator under 
ertain 
onditions. Otherentropy estimators like the splitting data estimator and the 
ross-validation es-timator, were proposed by Györ� [70�72℄ and by Ivanov [88℄ and Hall [73℄ re-spe
tively. These authors also studied the 
onsisten
y and 
onvergen
e 
riteriafor these estimators.2.2.2.4 Rényi's Quadrati
 Entropy EstimationMost of the work done in the estimation of entropy is related to Shannon'sentropy. However, re
ent resear
h works use estimators of Rényi's entropy withseveral appli
ations in learning systems. A parti
ular form of Rényi's entropy is



48 CHAPTER 2. DEFINITIONS AND BACKGROUNDthe quadrati
 one, be
ause, in 
onjun
tion with the Parzen Window probabilitydensity fun
tion estimation with gaussian kernel, it 
an be estimated in a non-parametri
 and very pra
ti
al way. The only estimation involved is the pdfestimation. Estimation of Rényi's quadrati
 entropy with Parzen window andgaussian kernel was proposed in [198℄. Posteriorly, the estimation of the general
α-order Rényi's entropy was presented in [45℄.Rényi's quadrati
 entropy HR2 
an be estimated in the following way:Let us 
onsider a sample {x1, x2, ..., xn} of observations of an i.i.d. randomvariable X ∈ R. Let us remember that the Parzen window method estimatesthe pdf f(x) as

f(x) =
1

nh

n
∑

i=1

K(
x − xi

h
). (2.65)Using a simple Gaussian kernel

G(x, 1) =
1

(2π)
1
2

exp

(

−1

2
xT x

)

, (2.66)the estimated pdf f(x) using Parzen window and Gaussian kernel is:
f(x) =

1

nh

n
∑

i=1

G

(

x − xi

h
, 1

)

=
1

n

n
∑

i=1

G
(

x − xi, h
2
)

. (2.67)Noting that the integral of the produ
t of two Gaussians is exa
tly given by aGaussian fun
tion whose varian
e is the sum of the varian
es of the two originalGaussian fun
tions ( [197℄), Rényi's quadrati
 entropy 
an be estimated by
ĤR2(x) = − log

∫ +∞

−∞

(

1

n

n
∑

i=1

G(x − xi, h
2)

)2

dx

= − log





1

n2

n
∑

i=1

n
∑

j=1

G(xi − xj , 2h
2)



 . (2.68)One 
an use other kernel fun
tions in this estimator not a
hieving, however,the same 
onvenient evaluation of the integral.Rényi's quadrati
 entropy estimation will be treated with more detail in thefollowing 
hapter.



2.2. ENTROPY 49The α-order Rényi's entropy (2.43) 
an be written with an expe
tation op-erator as:
HRα(X) =

1

1 − α
log

∫ +∞

−∞
fα(x) dx =

1

1 − α
log E

[

fα−1(x)
]

, (2.69)and approximating this expe
tation operator by the sample mean, we get,
HRα(X) ≈ 1

1 − α
log

1

n

n
∑

j=1

fα−1(xj). (2.70)Substituting the Parzen window estimator 2.65 in 2.70, the nonparametri
estimator for the α-order Rényi's entropy is:
ĤRα(X) =

1

1 − α
log

1

n

n
∑

j=1

[

1

n

n
∑

i=1

Kh(xj − xi)

]α−1

=
1

1 − α
log

1

nα

n
∑

j=1

[

n
∑

i=1

Kh(xj − xi)

]α−1

, (2.71)where 1
n

∑n
i=1 Kh(xj − xi) is the same as 1

nh

∑n
i=1 K(

xj−xi

h ).In [45℄ the 
onsisten
y of this estimator, on the 
ondition of 
onsisten
y ofthe related Parzen windowing and sample mean, is proved.





Chapter 3
Error Entropy MinimizationAlgorithm
We start this 
hapter with an overview of the appli
ation of information-theoreti

on
epts in learning systems and we will present the error entropy minimizationalgorithm that was used for regression. In order to perform neural network
lassi�
ation following the same approa
h, we developed the error entropy mini-mization algorithm for 
lassi�
ation. Further on, we present several optimizationpro
edures, in
luding several 
omplements in the algorithm, in order to obtaina faster learning. In this 
hapter, we also present some experiments showing theresults obtained with the new algorithm and also with the implemented opti-mization pro
edures. These experiments show the validity of the proposed errorentropy minimization (EEM) algorithm.3.1 Entropy in Learning SystemsSin
e the introdu
tion by Shannon [174℄ of the 
on
ept of entropy, and the poste-rior generalization made by Rényi [154℄, entropy and information theory 
on
eptshave been applied to learning systems. As a matter of fa
t, entropy and relative
on
epts have several appli
ations in learning systems. Some appli
ations are51



52 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMbased on �nding the mutual information and the 
onsequent relations betweenthe distributions of the variables involved in a parti
ular problem. Linsker [122℄proposed the Infomax prin
iple that 
onsists in maximizing the mutual informa-tion between the input and the output of a neural network. Mutual informationgives rise to either unsupervised or supervised learning rules depending on howthe problem is formulated. We 
an have unsupervised learning when we ma-nipulate the mutual information between the outputs of the learning system orbetween its input and output. Examples of these approa
hes are independent
omponent analysis (ICA) and blind sour
e separation [9, 18℄. If the goal is tomaximize the mutual information between the output of a mapper and an ex-ternal desired response, then learning be
omes supervised. Figure 3.1 shows ablo
k diagram of a unifying s
heme for learning, based on the mutual information
riterion.

Figure 3.1: Unifying learning models with the mutual information 
riterion(sour
e [152℄).Depending on the position of the swit
h, learning belongs to the unsupervisedtype (position 1 and 2) or supervised type (position 3). Position 1 
orrespondsto ICA or blind sour
e separation and position 2 to Linsker's Infomax 
riterion.In position 3, by maximizing the mutual information between the output of amapper and an external desired response, the learning be
omes supervised.



3.1. ENTROPY IN LEARNING SYSTEMS 53Mutual information is also applied in pattern re
ognition and 
lassi�
ation.Fano's inequality [49℄, mentioned earlier in Chapter 2, shows that maximizingmutual information de
reases the lower bound of the probability of 
lassi�
ationerror. It relates the probability of error to the 
onditional entropy. If the goalis to estimate a variable X with a dis
rete probability mass p(x) by 
al
ulat-ing an estimate from another random variable Y 
hara
terized by p(x|y), Fanoinequality states that
H(Pe) + Pe log(|X | − 1) ≥ H(X|Y ), (3.1)that 
an be weakened to:

1 + Pe log(|X |) ≥ H(X|Y ), (3.2)where Pe = P (x 6= x̂). Applying 2.41 in 3.2 we get:
Pe ≥

H(X) − I(X,Y ) − 1

log(|X |) . (3.3)Sin
e the entropy of X and the log(|X |) depend only on the data, we 
an seethat, in order to redu
e the lower bound of the probability of error, one mustmaximize the mutual information between x and y.Entropy and mutual information were used in a variety of real problems,su
h as noise dete
tion [190℄, image alignment [191℄, 
ryptology [25℄, time seriespredi
tion [46, 149℄, 
hannel equalization [163℄ or blind sour
e separation andICA [19, 23, 176℄. In the last years, Prín
ipe and his 
o-workers, presented aseries of works where they su

essfully applied Rényi's entropy and other derivedoptimality 
riteria to a huge variety of real problems, some of them related toblind sour
e separation, dimensionality redu
tion, feature extra
tion or timeseries predi
tion [45, 46, 55, 62, 137, 149, 150, 152, 197, 198℄. In [45℄ it is statedthat Prín
ipe was the �rst to introdu
e the terminology "information theoreti
learning" (ITL) into the adaptive systems literature.We may �nd some examples of appli
ations of entropy in the spe
i�
 �eld ofneural networks. Works presented in this subje
t show that information theory



54 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHM
on
epts may help us to build and tune neural networks to spe
i�
 problems.Examples of these appli
ations are the works that try to use entropy to determineand de�ne the 
omplexity of the neural network by de�ning bounds for it [17,41,204℄ or just by generating the neural network based on entropy [85, 183℄ or yetby performing neural network ar
hite
ture optimization and pruning [142, 147℄.Entropy and information theory 
an also be 
ombined with neural networksto solve some real problems [28, 180℄. Other examples of the relation betweenentropy and neural networks are the works of S
hraudolph [171℄ and Viola [190℄.With the spe
i�
 goal of performing supervised information-theoreti
 learn-ing with neural networks, the following approa
hes have been proposed:
• CIP (Cross Information Potential) - The CIP tries to establish the relationbetween the pdfs of two variables. These variables 
ould be the output ofthe network and the desired targets or the output of ea
h layer and thedesired targets [199℄.
• The entropy maximization of the output of the network and simultaneouslythe minimization of the entropy of the output of the data that belongs toa spe
i�
 
lass. This method was proposed in [77℄, as a way of performingsupervised learning without numeri
al targets.
• MEE (Minimum Error Entropy) - This method 
onsists of the minimizationof the error entropy between the outputs of the network and the desiredtargets. This approa
h was proposed in [46℄ and used to make time seriespredi
tion.We made experiments with these three methods with the goal of performingsupervised 
lassi�
ation. None of them has shown to be appropriate for thattask. This led us to develop a new approa
h for 
lassi�
ation problems that wedes
ribe in Se
tion 3.2



3.1. ENTROPY IN LEARNING SYSTEMS 553.1.1 The Error Entropy Minimization Algorithm for Regres-sionAs we have seen in Chapter 2, Rényi's quadrati
 entropy 
an be estimated ina very e�
ient way. This entropi
 measure was used in [46, 47℄ to estimate theentropy of the errors between the output and the desired targets of an adaptivesystem. In this 
ase, the authors have applied Rényi's quadrati
 entropy intime delay neural networks of various sizes to perform short-term predi
tion ofMa
key-Glass 
haoti
 time series and nonlinear system identi�
ation.Consider e = d−y to be the error between the desired and the a
tual outputof an adaptive system. The global minimum of Shannon's entropy of the error
e is a
hieved when the pdf of the error is a Dira
-δ fun
tion [46℄, meaning thatthe global minimum is a
hieved when all errors are equal.Regarding Rényi's quadrati
 entropy of e:

ĤR2(e) = − log

∫ +∞

−∞

(

1

n

n
∑

i=1

G(e − ei, h
2)

)2

dx

= − log





1

n2

n
∑

i=1

n
∑

j=1

G(ei − ej , 2h
2)



 = − log V (e), (3.4)it was shown that it has the lo
al minimum e = 0 and that the global minimumof this estimator is also e = 0. In this 
ase the minimum is obtained when all theerrors have the same value. Prin
ipe [150℄ 
alls V (.) the information potentialin analogy with the potential �eld in physi
s.In regression problems, this approa
h 
an lead to a situation where the �-nal solution, the �nal weight values, may not 
orrespond to a zero-mean errorsolution. A
tually, in [46℄ it is stated that:"One important point to note in training with entropy is that sin
e en-tropy does not 
hange with the mean of the distribution, the algorithmwill 
onverge to a set of optimal weights, whi
h may not yield zero-meanerror. However, this 
an be easily 
orre
ted by properly modifying the



56 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMbias of the output pro
essing element of the MLP to yield zero meanerror over the training data set just after training ends."In the next se
tion we present the 
onditions to apply a similar algorithm oferror entropy minimization to 
lassi�
ation problems.3.2 The EEM Algorithm for Supervised Classi�
ationAs we saw on the previous se
tion, the minimization of the error entropy wasalready used in learning systems, mainly on regression and time series predi
tion.Although in [45℄ is said that "Due to the property that the entropy estimator isinvariant to the mean of the underlying density of the samples as is the a
tualentropy, in supervised learning entropy 
annot be used to for
e the mean of theerror signal to zero", we will show in this se
tion how to use the minimizationof the error entropy in 
lassi�
ation problems [164℄.We will perform 
lassi�
ation tasks, using as 
ost fun
tion Rényi's quadrati
entropy of the error between the output of the neural network and the desiredtargets: this yields the Error Entropy Minimization algorithm, EEM. To per-form the neural network learning, we apply the ba
k-propagation algorithm and
onsequently the gradient des
ent method for entropy minimization. This samealgorithm with Shannon's entropy was proposed posteriorly in [178℄, also withgood results when 
omparing it with MSE and Cross-entropy.Let us see how to estimate Rényi's quadrati
 entropy of multi-dimensionalrandom variables.Let a = ai ∈ R
m, i = 1, ..., N , be a set of samples from the output Y ∈ R

m ofa mapping R
n 7→ R

m : Y = g(w, x), where w is a set of Neural Network weights.The Parzen window method estimates the pdf f(y) as
f(y) =

1

Nhm

N
∑

i=1

K

(

y − ai

h

)

, (3.5)where N is the number of data points, K is a kernel fun
tion, and h the band-



3.2. THE EEM ALGORITHM FOR SUPERVISED CLASSIFICATION 57width or smoothing parameter. The Gaussian kernel
G(y; 0,Σ) =

1

(2π)
m
2 |Σ| 12

exp

(

−1

2
yT Σ−1y

)

, (3.6)will be used in his simple form, a spheri
al symmetri
 Gaussian kernel with zeromean and diagonal 
ovarian
e matrix Σ = I, where I is the m × m identitymatrix:
G(y; 0, I) =

1

(2π)
m
2 |I| 12

exp

(

−1

2
yT I−1y

)

. (3.7)The estimated pdf f(y) using Parzen window and simpli�ed Gaussian kernelis:
f(y) =

1

Nhm

N
∑

i=1

G

(

y − ai

h
, I

)

=
1

Nhm

N
∑

i=1

G
(y

h
;
ai

h
, I
)

. (3.8)Substituting 3.8 in 2.44 Rényi's quadrati
 entropy, 
an be estimated by
ĤR2(y) =

= − log

∫ +∞

−∞

[

1

Nhm

N
∑

i=1

G
(y

h
;
ai

h
, I
)

]2

dy

= − log
1

N2h2m

∫ +∞

−∞

[

N
∑

i=1

1

(2π)
m
2 |I| 12

exp

(

−1

2
(
y − ai

h
)T I−1(

y − ai

h
)

)

]2

dy

= − log
1

N2h2m

∫ +∞

−∞

[

N
∑

i=1

hm

(2π)
m
2 (|h2I|) 1

2

exp

(

−1

2
(y − ai)

T (h2I)−1 (y − ai)

)

]2

dy

= − log
1

N2

∫

[

N
∑

i=1

G(y; ai, h
2I)

]2

dy.Given that ( [197℄):
∫

G(x; a,A)G(x; b,B) = G(a − b; 0, 2AB), (3.9)



58 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMRényi's quadrati
 entropy is estimated by:
ĤR2(y) = − log





1

N2

N
∑

i=1

N
∑

j=1

G(ai − aj ; 0, 2h
2I)



 = − log V (a). (3.10)For simpli
ity and sin
e the log is a monotoni
 in
reasing fun
tion, only V (a)will be used for entropy minimization purposes.To apply the gradient des
ent method, we need to 
ompute the derivative of
V (a) with respe
t to a:

∂V

∂a
=

∂

∂a





1

N2

N
∑

i=1

N
∑

j=1

G(ai − aj; 0, 2h
2I)





= − 1

2N2h2

N
∑

i=1

N
∑

j=1

G(ai − aj ; 0, 2h
2I)(ai − aj). (3.11)Let us now see how to use Rényi's quadrati
 entropy as 
ost fun
tion in aneural network 
lassi�
ation problem (Fig. 3.2).

Input x Output y

Targets t

Adjust

Cost Function

)(2 eH R

yte

e

Figure 3.2: Neural network learning with entropi
 
ost fun
tion.Let d ∈ R
m be the desired targets and Y the network output from the
lassi�
ation problem and ei = di − yi the error for ea
h data sample i of agiven data set. The error entropy minimization approa
h [46℄ used in timeseries predi
tion, states that Rényi's Quadrati
 Entropy of the error, with pdfapproximated by Parzen window with Gaussian kernel, has minima along theline where the error is 
onstant over the whole data set. Also the global minimumof this entropy is a
hieved when the pdf of the error is a Dira
 delta fun
tion.



3.2. THE EEM ALGORITHM FOR SUPERVISED CLASSIFICATION 59Taking the quadrati
 entropy of the error
ĤR2(e) = − log





1

N2

N
∑

i=1

N
∑

j=1

G(ei − ej ; 0, 2h
2I)



 = − log V (e), (3.12)we 
learly see that this entropy will be minimum when the di�eren
es of all theerror pairs (ei − ej) are zero. This means that the errors are all the same. In
lassi�
ation problems with separable 
lasses, the goal is to get all the errorsequal to zero, meaning that we don't get any errors in the 
lassi�
ation. In
lassi�
ation problems with non separable 
lasses, the goal is to a
hieve theBayes error.In the following we prove that, in 
lassi�
ation problems, by imposing some
onditions to the output range and target values, the EEM algorithm makes theerror 
onvergent to zero. The obje
tive is to minimize the entropy of the error
e = d− y and, as stated above, to a
hieve the goal of e = 0 for all data samples.Corollary 1. Consider a two 
lass supervised 
lassi�
ation problem with a unidi-mensional output ve
tor. Let y ∈ [r, s] be the output of the network and d ∈ {a, b}be the target ve
tor of the desired output. If r = a, s = b and a = −b then theappli
ation of the EEM algorithm for
es the errors on ea
h data point to be equalto zero.Proof. De�ne the targets as d ∈ {−a, a} and 
onsider the output of the networkas y ∈ [−a, a]. The errors are given by e = d − y.If the true target for a given input xi is {a} then the error ei varies in
P = [0, 2a].If the true target for a given input xj is {−a} then the error ej varies in
Q = [−2a, 0].Sin
e the minimization of the entropy of the error makes the errors all havethe same value, r, we get ei = ej = r.But r must be in P and Q. Sin
e P ∩ Q = {0} follows that r = 0 and
ei = ej = 0.A similar proof 
an be made for multidimensional output ve
tors.In the EEM algorithm, the error entropy estimation is di�erent a

ording tothe ve
tor e dimension. This dimension depends on the number of MLP outputneurons that depend on the number of 
lasses, C, and their 
oding. If we use



60 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMbinary 
oding 1, the dimension of ve
tor e is ⌈log2C⌉, whereas if we use theone-out-of-C 
oding, the number of output neurons, as well as the dimensionof ve
tor e, is equal to the number of 
lasses 2. In the experiments that weperformed we obtained good results for both 
odings, but we suggest the use ofbinary 
oding only when the number of 
lasses is a power of 2; otherwise, we getan ex
essive number of outputs 
ompared with the number of 
lasses.In Fig. 3.3 we show examples of the support spa
e of the error ve
tor distribu-tion for two-
lass and three-
lass problems (output ve
tor dimension 
orrespondsto the one-out-of-C en
oding).

(a) (b)Figure 3.3: The support spa
e (shadowed regions) for the error distribution ina (a) 2-dimensional and (b) 3-dimensional outputs (a two-
lass and a three-
lass problem).To apply the EEM algorithm the entropy gradient at ea
h point is ba
k-propagated into the MLP using the ba
k-propagation algorithm (the same usedby the MSE algorithm). The update of the neural network weights is performed1When using binary 
oding we 
an use a single output neuron to solve a two-
lass problem.The single output y de�nes, for example, 
lass 1 if y < 0 and 
lass 2 if y ≥ 0. Targets areen
oded as −1 and 1. For instan
e a four-
lass problem only needs 2 outputs.2In the one-out-of-C 
oding the target ve
tors are en
oded su
h that d = [−1, ..., 1, ...,−1],where the 1 appears at the kth 
omponent for a pattern belonging to 
lass Ck.



3.2. THE EEM ALGORITHM FOR SUPERVISED CLASSIFICATION 61using ∆w = ±η ∂V
∂w . The ± means that we 
an either maximize (+) or minimize

(−) the entropy.As we have seen, by minimizing Rényi's Quadrati
 Entropy of the error,applying the ba
k-propagation algorithm, we �nd the weights of the neural net-work that yield good results in 
lassi�
ation problems as we show in the followingexperiments. This algorithm represents a new way of performing supervised 
las-si�
ation by using as 
ost fun
tion the entropy of the error between the outputof the MLP and the desired targets:
EH = HR2(e). (3.13)Some aspe
ts in the implementation of the algorithm will be studied in detailin Se
tion 3.3; for example, how to 
hoose h and η and make their values adjustduring the training phase to improve the 
lassi�
ation performan
e.3.2.1 Preliminary ExperimentsWemade several preliminary experiments, using multi-layer per
eptrons, to showthe appli
ation of the EEM algorithm to data 
lassi�
ation and we have 
om-pared the results with the MSE. The learning rate η and the smoothing pa-rameter h were experimentally sele
ted; however, we will present later severaloptimization pro
edures that over
ome the need for exhaustive experiments toobtain the ideal values for these parameters.In the �rst experiment we 
reated a data set 
onsisting of 200 data points,
onstituting 4 separable 
lasses (Fig. 3.4).Several [2:nh:4℄ MLP's 3 were trained and tested 40 times, 150 epo
hs, usingEEM and also MSE. We made nh (the number of neurons in the hidden layer)vary from 3 to 6. We used the 2-fold 
ross validation method. The results ofthe �rst experiment are shown in Table 3.1. The last row (STD) presents the3We used in this experiment the one-out-of-C 
oding, and this is the reason for having 4outputs for a 4-
lass problem.
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1

Figure 3.4: Data set for the �rst experiment with the EEM algorithm.standard deviation of the errors over the di�erent nh sessions. The 
lassi�
ationerrors are smaller in EEM than in MSE.Table 3.1: The test error and standard deviations for the �rst experiment.Last row, STD, represents the standard deviation of the mean errors obtainedwith all nh values for EEM and MSE.
nh EEM MSE3 2.43(1.33) 2.93(1.46)4 2.20(1.20) 2.55(1.24)5 2.01(1.09) 2.64(1.13)6 2.09(1.02) 2.91(1.73)STD 0.18 0.19In Fig. 3.5, Fig. 3.6 and Fig. 3.7 we depi
ted the errors produ
ed in steps 1,10 and 40 respe
tively, of this �rst experiment. Sin
e we have a neural networkwith four outputs, the error ve
tors e form a 100×4 matrix. This matrix of errorsis represented in ea
h �gure by a 4× 4 matrix of axes with s
atter plots of ea
h
olumn of the matrix against the other 
olumns. Diagonals are the histograms
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h 
olumn of the matrix.Analyzing these graphs we 
an see that the errors are lo
ated (more visiblein the �rst iteration) in the three support regions, as depi
ted in Fig. 3.3b andthat the error ve
tors 
onverge to the origin (0, 0, 0) during the experiment.
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Figure 3.5: Errors in the �rst iteration of an experiment with data set ofFig. 3.4.
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66 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMIn the following experiments, we used the data sets Diabetes, Wine and Iris(Appendix A 
ontains a summary of the 
hara
teristi
s of all the real data setsused in this work).Several MLP's with one hidden layer were trained and tested 20 times, 150epo
hs, for EEM and also for MSE. The 2-fold 
ross validation was used. Theresults of these experiments are presented in Table 3.2.Table 3.2: The error results of the se
ond set of experiments. Last row, STD,represents the standard deviation of the mean errors obtained with all nhvalues for EEM and MSE.Diabetes Wine Iris
nh EEM MSE EEM MSE EEM MSE2 23.80(0.94) 28.40(4.87) 3.62(1.30) 9.72(10.60)3 23.94(0.97) 27.25(4.72) 3.81(1.00) 4.27(3.77) 4.36(1.12) 4.72(4.75 )4 23.99(1.52) 26.42(4.53) 1.94(0.72) 3.03(1.08) 4.43(1.30) 4.75(1.27)5 23.80(1.04) 25.10(1.80) 2.50(1.01) 3.20(1.83) 4.38(1.34) 4.15(1.32)6 24.10(1.33) 24.70(1.80) 2.47(1.20) 3.06(1.43) 4.30(1.16) 3.97(1.05)7 24.10(0.90) 24.40(1.06) 2.44(1.00) 2.39(1.50) 4.41(1.42) 5.18(4.74)8 23.90(0.71) 23.90(1.18) 2.16(0.92) 2.92(1.07) 4.31(1.27) 4.65(1.32)9 24.30(1.42) 24.00(0.95) 2.22(0.83) 2.50(1.35)10 23.60(0.86) 24.10(1.20) 2.31(0.51) 2.95(1.29)11 24.02(1.00) 27.41(5.19)12 24.93(3.24) 27.64(5.04)STD 0.35 1.69 0.65 2.29 0.05 0.44The results show, in almost all experiments, a small, but better performan
eof the EEM algorithm. They also show, espe
ially in the se
ond set of experi-ments, that the variation of the error along nh is smaller in the EEM than inthe MSE. This 
an be seen in the last row, STD, the standard deviation of themean errors obtained with all nh values for EEM and MSE. This 
ould meanthat the relation between the 
omplexity of the MLP and the results of theEEM algorithm is not so tight as for the MSE algorithm. In other words, weobtained some empiri
al eviden
e that EEM generalizes better than MSE. This
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ally lower standard deviation of the errors of theEEM when 
ompared with MSE. These �ndings 
an be understood taking intoa

ount that entropy is better at 
hara
terizing the pdf of the errors than simplyMSE, whi
h only 
hara
terizes their varian
e.3.3 Optimization of the EEM AlgorithmWe performed several adaptations to the EEM algorithm, trying to a
hieve afaster 
onvergen
e and a better performan
e. We made some studies fo
usedon the learning rate parameter [169℄, on the smoothing parameter [167℄ and on
ombining bat
h and online training [166℄. In [138℄ we 
an �nd some popularte
hniques for parameter optimization, applied to information theoreti
 learning,parti
ularly in unsupervised feature extra
tion and frequen
y-doubling problems.We started the optimization of EEM algorithm by trying to make the kernelsmoothing parameter (kernel window size) h an updated variable along the train-ing pro
ess, namely proportional to the error varian
e. This strategy was basedon the fa
t that, as we approa
h the optimal solution, the errors tend to zero(m-tuples of zeros) and so it makes sense to de
rease h sin
e the points are all
lose to ea
h other. However, the estimates of the error entropy and its deriva-tive depend on the values of h; smaller h originates higher entropy estimates. Ifwe redu
e the value of h from one iteration to another, by that simple fa
t, thevalue of the entropy is higher, the opposite to our obje
tive of minimization ofthe entropy of the error in 
onse
utive iterations. If, at ea
h algorithm iteration,we manage to minimize the entropy fun
tion, we 
an, at least theoreti
ally, getan optimal solution. The problem found when using a variable h was that, inthe proximity of the minimum training error, the algorithm be
ame very unsta-ble, loosing the 
apability of 
onvergen
e. In Fig. 3.8 we show the behavior ofthe training 
urve when using a variable h, proportional to the error varian
e.We 
an see that h varies with the training error but, at a 
ertain stage (aroundepo
h 100 and training error 10%), the algorithm loses stability never returning
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Figure 3.8: The observable instability of EEM algorithm when using variable
h in an experiment with data set 2VowelsPB.



3.3. OPTIMIZATION OF THE EEM ALGORITHM 69After performing several experiments with di�erent approa
hes trying toover
ome this limitation, and having observed the same behavior we left behindthe possibility of using a variable h along the learning pro
ess and we startedthe improvement of EEM algorithm by implementing an adaptive learning rate
η and a �xed smoothing parameter h.3.3.1 Adaptive Learning RateThe se
ond implemented optimization pro
edure was an adaptive learning rate η.As we have seen in Chapter 2, several authors have shown that, by adapting the ηvalue along the learning pro
ess, one 
an get a better and faster 
onvergen
e in aneural network using mean squared error as 
ost fun
tion. With the experimentsto be des
ribed later, we tried to grasp on what 
onditions we 
ould applyan adaptive learning rate to a multi-layer per
eptron trained with the EEMalgorithm. To get a faster 
onvergen
e, still obtaining good 
lassi�
ation results,we �rst planed to adjust η as a fun
tion of the error entropy similarly to adjustingit as a fun
tion of the MSE. We will see how the variation of the learning ratealong the training pro
ess 
an yield good results.As we saw in Se
tion 3.2, the gradient of Rényi's Quadrati
 Entropy of the er-ror is ba
k-propagated into the MLP in the same way as with the MSE algorithm.The update of the neural network weights is performed using ∆w = ±η δV

δw .The variability of the learning rate follows the simple but e�e
tive rule men-tioned in Se
tion 2.1.4.4: if the error entropy de
reases between two 
onse
utiveepo
hs of the training pro
ess, then the algorithm produ
es an in
rease in thelearning rate parameter. Similarly, if the error entropy in
reases between two
onse
utive epo
hs, then the algorithm produ
es a de
rease in the learning rateparameter and, furthermore, it restarts the update step, i.e. we re
over and usethe previous "good" values of all the neural network parameters. In Se
tion 3.3.3we also implemented with good results two other di�erent rules: the Silva andAlmeida's rule [177℄ and the resilient ba
kpropagation (RProp) algorithm [156℄.



70 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMThe rule for learning rate updating is:
η(n) =











η(n−1)u if H
(n)
R2 < H

(n−1)
R2

η(n−1)d ∧ restart if H
(n)
R2 ≥ H

(n−1)
R2

, u > 1, d < 1, (3.14)where η(n) and H
(n)
R2 are, respe
tively, the learning rate and Rényi's Quadrati
entropy of the error at the nth iteration and u and d are the in
reasing andde
reasing fa
tors.We performed several experiments in order to �nd good values for u and d. Inone of these tests, that we present here, we used the bi-dimensional 2VowelsPBdata set.In Fig. 3.9 we show an example of the training phases with �xed learningrate, FLR (dotted lines), and with rule 3.14 variable learning rate, VLR (solidlines), of two experiments that have produ
ed the smallest 
lassi�
ation errors.The use of VLR produ
es a 
ontinuous de
reasing entropy 
urve and a minimumtraining error is a
hieved.
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ates the number of times thatthe algorithm restarts the update step. These experiments suggest that, if the
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es an in
rease on the entropy, then the learning rate shouldbe de
reased by a 
onsiderable fa
tor. Based in the several tests that we haveperformed and in the fa
t that our errors are always limited to a restri
ted set,due to the 
onditions mentioned in Se
tion 3.2, we found out that d and u shouldhave values around 0.2 and 1.2, respe
tively. The solid line in Fig. 3.9 representsa 
ase with d = 0.2 and u = 1.2.Table 3.3: Results for di�erent values for u and d.u d restart Training Error1.2 0.2 36 5.261.2 0.4 65 5.261.2 0.6 112 5.591.2 0.8 256 5.921.4 0.2 64 5.591.4 0.4 115 5.261.4 0.6 197 24.341.4 0.8 465 5.591.6 0.2 90 5.591.6 0.4 154 5.261.6 0.6 279 5.591.6 0.8 640 5.261.8 0.2 112 5.591.8 0.4 193 5.591.8 0.6 352 5.591.8 0.8 801 5.26
3.3.1.1 Experiments: EEM-VLR versus MSE-VLRWe made a �rst experiment, using multilayer per
eptrons (MLP), to show the ap-pli
ation of the Error Entropy Minimization with Variable Learning Rate (EEM-VLR) algorithm to data 
lassi�
ation and 
ompare it with Mean Square Errorwith Variable Learning Rate (MSE-VLR) algorithm. In this experiment we usedthe same data set 2VowelsPB. Several [2 : nh : 4] MLP's were trained and tested
40 times, 300 epo
hs, using the EEM-VLR and also the MSE-VLR. We made
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nh vary from 3 to 20. The 2-fold 
ross validation method was used. The resultsof this experiment are shown in Table 3.4.Table 3.4: Classi�
ation errors for EEM-VLR and MSE-VLR.

nh EEM-VLR MSE-VLR3 9.68(3.31) 24.46 (9.84)4 8.18(2.30) 17.49 (9.10)5 8.54(2.81) 15.86 (8.61)6 8.73(2.51) 13.80 (7.61)7 9.22(4.60) 14.35 (8.26)8 8.67(2.60) 12.29 (6.58)9 9.03(2.51) 12.46 (7.48)10 8.77(1.88) 11.95 (6.64)11 9.90(3.55) 11.34 (6.66)12 9.30(2.56) 10.67(6.01)13 10.16(2.83) 9.44(3.84)14 10.01(2.50) 9.46(3.63)15 10.14(2.16) 8.61(1.30)16 11.50(5.54) 9.22(3.48)17 10.72(1.94) 9.77(4.97)18 12.68(4.47) 10.61(6.18)19 12.62(4.10) 9.71(4.76)20 12.94(5.80) 9.10(3.88)We see in Table 3.4 that EEM-VLR algorithm produ
es better results when
ompared to the MSE-VLR algorithm. The smallest error is 8.18. The MSE-VLR algorithm produ
ed better results only for larger values of the number ofneurons in the hidden layer. However, this 
ould be due to over-�tting, sin
ewe used a �xed number of epo
hs (no early stopping). We also see that similarresults are a
hieved with less 
omplex MLP's using the EEM-VLR algorithm(Fig. 3.10). This may suggest that, with EEM, we need less 
omplex neuralnetworks, 
ompared to MSE in order to solve a parti
ular 
lassi�
ation problem.Two more experiments were made applying the two algorithms to the data
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Figure 3.10: Results 
omparison between EEM-VLR and MSE-VLR for dataset 2VowelsPB.sets Diabetes and Wine.Several MLP's were trained and tested 20 times, 120 epo
hs, with d = 0.2and u = 1.2. Again the 2-fold 
ross validation was used. The initial learning ratevalue for our experiments is usually around 0.1, however one 
an use a di�erentvalue by observing the behaviour of the training 
urve4. The results of theseexperiments are shown in Table 3.5. Again, the best results (bold), in this two
lassi�
ation problems, were a
hieved with the EEM-VLR algorithm.We present in Fig. 3.11 the results 
omparison between EEM-VLR and MSE-VLR with data sets Diabetes and Wine and we 
an see, as in the previousexperiment, that with EEM less 
omplex MLP's are needed to get similar resultswhen solving these two 
lassi�
ation problems.3.3.2 The Smoothing ParameterHaving performed the �rst improvement of the EEM algorithm by using anadaptive learning rate during the training pro
ess, we sear
hed for further im-4If a very small value is used for a parti
ular problem we will get a learning 
urve with aninitial very �at region indi
ating that the weights are updated by a very small amount. If weuse a high value for the learning rate, the training 
urve will have a initial very fast de
reaseor, if an extremely high value is used, the algorithm 
an even fail to 
onverge.



74 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMTable 3.5: Classi�
ation errors for the EEM-VLR and the MSE-VLR algo-rithms. Diabetes Wine
nh EEM-VLR MSE-VLR EEM-VLR MSE-VLR2 23.80(0.94) 28.40(4.87) 3.62(1.3) 9.72(10.6)3 23.94(0.97) 27.25(4.72) 3.81(1.00) 4.27(3.77)4 23.99(1.52) 26.42(4.53) 1.94(0.72) 3.03(1.08)5 23.79(1.04) 25.12(1.80) 2.50(1.01) 3.20(1.83)6 24.07(1.33) 24.73(1.80) 2.47(1.20) 3.06(1.43)7 24.12(0.90) 24.35(1.06) 2.44(1.00) 2.39(1.50)8 23.90(0.71) 23.87(1.18) 2.16(0.92) 2.92(1.07)9 24.26(1.42) 24.04(0.95) 2.22(0.83) 2.50(1.35)10 23.62(0.86) 24.08(1.20) 2.31(0.51) 2.95(1.29)11 24.02(1.00) 27.41(5.19)12 24.93(3.24) 27.64(5.04)provement by studying the in�uen
e of the value of the smoothing parameter hin the performan
e of the neural network. As a matter of fa
t, from the manyexperiments performed, we 
ame to re
ognize that the smoothing parameter isthe most important fa
tor and the one that has more in�uen
e in the �nal re-sults of a 
lassi�
ation problem, when using the EEM algorithm. The 
hoi
e ofthe smoothing parameter in the Parzen Window estimation of the probabilitydensity fun
tion for the 
omputation of the entropy and its gradient is a di�
ultissue of the EEM algorithm. In the following subse
tion we present a formulayielding the value of the smoothing parameter depending on the number of datasamples and on the neural network output dimension. Several experiments withreal data sets were made in order to show the validity of the proposed formula.3.3.2.1 Tuning the Smoothing ParameterOne of the problems of pdf estimation using the Parzen Window method, besidesthe 
hoi
e of the kernel, is the 
hoi
e of the smoothing parameter h. In the EEMalgorithm the value of h depends on: the di�erent 
odings of the number of
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ation errors for data set Diabetes.
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(b) Classi�
ation errors for data set Wine.Figure 3.11: Results 
omparison between EEM-VLR and MSE-VLR for datasets Diabetes and Wine.
lasses; the number of data samples; the dimension m of the ve
tor e.Let us remind that for 
ontinuous f(x), the estimated density fun
tion will
onverge to the true density as N → ∞ when:
h → 0 and Nh → ∞. (3.15)We have also seen in Chapter 2 that, for multidimensional 
ases, assumingnormal distributions and using the normal kernel, Bowman and Azzalini [24℄proposed the formula:
hop = s

(

4

(m + 2)N

) 1
m+4

, (3.16)



76 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMwhere s is the sample standard deviation, N is the number of samples and m isthe dimension of ve
tor x. An important fa
t that impedes, in our 
ase, the use offormula 3.16 is that our algorithm uses the entropy of e as a 
ontrol variable, i.e.,the algorithm progresses only if the entropy at a given iteration is smaller thanat the previous one. Sin
e the entropy value is proportional to the smoothingparameter value used to 
ompute it, if one uses a value for h proportional to thevarian
e of e, one might be in
reasing, by this simple fa
t, the entropy value andthe algorithm fails to 
onverge to a minimum. This means that we are limitedto use a value for h that does not depend on s. Considering that the variable
e takes values, in the unidimensional 
ase, in the interval [−2, 2], and that themaximum standard deviation in this 
ase is 2, we 
onsidered using this value torepla
e the standard deviation in formula 3.16:

hop = 2

(

4

(m + 2)N

)
1

m+4

. (3.17)Note that, in the EEM algorithm, we only need to 
ompute the entropyand its gradient; we do not need to estimate the probability density fun
tionof e. This is a relevant fa
t be
ause, in the gradient des
ent method, moreimportant than 
omputing with extreme pre
ision the gradient is to get withrelative pre
ision its dire
tion. Also, the tentative of estimating with extremea

ura
y the probability density fun
tion by using very small values of h, 
ausesthe estimations of entropy to have high variability in 
onse
utive epo
hs. Thisfa
t 
an also lead to the o

urren
e of lo
al minima. Given these 
onsiderations,we do not hesitate in using h values higher than the ones usually proposed forpdf estimation. Taking into a

ount the experimental results with several datasets we tried to formulate a rule that yields higher values of h for smaller datasets than those obtained with formula 3.17 and still indu
ing the same behavior.We then arrived at the following formula with behavior similar to 3.17:
hop = 25

√

m

N
. (3.18)Noti
e the de
reasing behavior with N and in
reasing behavior with m as
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omparison between the values of h obtained with formulas 3.17 and3.18 for di�erent values of m is shown in Fig. 3.12.
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Figure 3.12: Value of h for formulas 3.17 (dashed) and 3.18 (solid) for m=2,3 and 4. (Marked points refer to experiments with data sets summarized inTable 3.15).In the several experiments that we have performed using formula 3.18, theresults were very satisfa
tory, as we will see in the next paragraph.Experiments We now des
ribe experiments using several di�erent real datasets with di�erent number of samples and di�erent number of 
lasses, namelythe Ionosphere, Sonar, Wdb
, Iris, Wine and 2VowelsPB data sets.We also produ
ed an arti�
ial data set and used it as a 2-
lass and as a 4-
lass
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lassi�
ation problem in an attempt to establish the in�uen
e of the number of
lasses in the value of the smoothing parameter. The two versions of the arti�
ialdata set (that we 
all XOR-n), similar to an XOR problem, but with some noiseadded, are shown in Fig. 3.13.
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Figure 3.13: Arti�
ial data set for the �rst two experiments.In all experiments we used [I:nh:O℄ MLP's, where I is the number of inputneurons, nh is the number of neurons in the hidden layer and O is the numberof output neurons. We applied the 2-fold 
ross validation method using half of



3.3. OPTIMIZATION OF THE EEM ALGORITHM 79the data for training and half for testing. The experiments for ea
h data setwere performed varying the number of neurons in the hidden layer, the valueof the smoothing parameter and using di�erent number of epo
hs. The resultsare shown in Tables 3.6, 3.7, 3.8 and 3.9. Ea
h result is the mean error of 20repetitions. For ea
h number of epo
hs we highlighted the 10 best results inorder to get the needed guidan
e about the optimum value for the smoothingparameter.In Tables 3.6 and 3.7 we show the results of the 
lassi�
ation errors forthe XOR-n data sets. Comparing the two tables, we 
an see that an in
reasednumber of 
lasses demands an in
reased value of the smoothing parameter. Inthe �rst 
ase, (2-
lass problem), the optimum value for h is about 4.0 and in these
ond 
ase, (4-
lass problem), the optimum value for h is about 4.8.The 
lassi�
ation errors for the real data sets are shown in Tables 3.8, 3.9,3.10, 3.11, 3.12, 3.13 and 3.14. For ea
h data set we performed experimentswith di�erent number of epo
hs. In the results we highlighted (bold), for ea
hnumber of epo
hs of ea
h data set, the 10 smallest 
lassi�
ation errors and, forea
h data set, we underlined the best 
lassi�
ation results.



80 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMTable 3.6: Errors (%) for XOR-n data set, 2 
lasses (resp. 80, 120 and 160epo
hs from top to bottom).
h

nh 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.02 36.50 35.43 37.90 36.28 35.93 35.40 35.33 35.63 34.45 36.35 34.204 28.25 30.38 27.18 26.33 26.30 25.75 27.75 24.70 28.60 25.68 27.536 24.40 26.43 24.45 26.78 27.10 26.83 27.25 24.98 26.75 23.75 23.708 23.10 23.93 26.65 23.88 22.43 24.93 22.30 23.73 23.05 24.93 22.3810 23.38 27.00 26.38 25.65 27.08 21.10 26.65 25.33 21.20 25.50 25.5512 27.30 28.15 26.48 23.68 27.20 24.80 22.20 22.65 24.68 24.10 23.602 35.10 35.78 34.00 33.68 33.83 34.95 33.20 33.98 32.93 33.78 33.984 24.30 29.68 26.25 25.05 24.65 25.18 23.38 24.10 22.60 23.40 25.186 24.43 25.08 25.00 24.80 24.53 21.20 24.10 23.68 23.63 22.75 23.338 22.75 23.88 25.45 28.55 25.03 22.88 25.80 23.88 24.08 23.80 22.7510 24.48 25.75 26.75 26.63 24.70 26.23 23.30 23.43 24.20 24.93 22.6312 23.55 26.38 27.13 25.63 26.43 22.15 24.15 23.00 25.80 23.25 24.052 36.28 34.68 35.10 33.65 34.90 33.78 34.03 33.68 35.10 33.03 34.704 27.03 26.28 27.10 26.58 22.00 25.63 24.40 24.00 21.90 21.33 22.036 22.78 24.93 24.40 24.75 26.48 21.28 23.58 23.38 24.45 23.18 22.088 23.43 24.30 27.43 25.25 24.18 24.33 25.53 22.55 23.25 24.33 24.3310 23.70 26.60 25.50 26.60 24.98 25.80 23.73 22.78 23.38 23.60 22.9512 22.55 27.05 26.55 25.83 25.00 23.48 26.73 23.70 23.00 23.60 23.33Table 3.7: Errors (%) for XOR-n data sets, 4 
lasses (resp. 80, 120 and 160epo
hs from top to bottom).
h

nh 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.02 19.00 17.65 18.90 17.75 19.10 17.38 18.18 18.68 18.83 18.68 17.404 19.08 18.13 17.98 18.18 18.50 17.73 18.78 17.98 17.70 18.33 19.106 18.13 19.10 17.90 17.73 17.95 18.65 18.00 18.48 17.30 17.65 18.108 19.30 18.73 17.85 18.30 18.30 18.20 18.13 19.18 19.53 18.40 19.5310 18.88 17.40 19.15 17.75 18.53 19.13 18.08 18.50 18.70 19.15 17.7312 19.10 18.83 18.23 18.58 18.30 18.38 18.70 18.25 18.70 19.13 18.452 18.63 20.38 18.33 18.28 18.20 18.48 17.68 17.60 17.38 17.50 17.854 19.43 19.28 18.98 18.23 18.05 18.23 18.18 18.60 18.08 18.23 18.086 18.63 18.55 19.30 17.75 18.95 18.80 18.98 18.93 17.80 17.68 17.858 20.18 18.95 18.48 18.15 18.73 18.70 18.48 18.35 17.95 18.65 18.1810 19.70 19.73 18.88 18.53 17.75 18.15 18.05 18.08 18.63 18.78 17.6812 20.63 20.45 18.38 18.65 18.80 17.78 19.15 18.50 18.78 19.15 18.552 18.35 18.60 17.93 18.88 18.08 17.33 18.43 18.38 17.40 17.60 18.184 19.45 18.63 19.50 19.38 17.95 18.85 20.08 19.13 19.68 18.45 18.706 19.80 19.00 19.75 19.68 18.90 19.03 19.28 19.30 18.85 18.33 19.458 19.20 19.30 19.60 19.35 18.90 18.28 19.60 19.05 18.78 19.30 19.0310 18.83 19.85 19.35 19.38 19.90 19.65 19.45 18.98 19.98 19.58 19.3812 19.48 19.08 19.38 19.58 19.05 19.28 19.53 19.18 19.33 19.18 19.08



3.3. OPTIMIZATION OF THE EEM ALGORITHM 81Table 3.8: Errors (%) for data set Ionosphere (resp. 40, 60 and 80 epo
hs).
h

nh 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6 54 33.84 12.47 12.71 13.07 12.70 13.10 12.73 13.09 12.96 12.718 19.54 12.70 12.86 12.40 12.97 12.80 12.79 12.39 12.81 12.6112 20.04 13.21 12.81 12.37 12.74 12.80 12.70 12.67 12.06 12.9016 15.29 13.13 13.20 12.82 12.77 12.67 12.26 12.73 12.80 12.7020 16.26 12.69 13.03 12.93 12.70 12.64 12.46 12.59 12.43 12.6924 17.13 12.61 13.01 13.17 13.23 12.84 12.26 12.97 12.63 12.874 12.70 13.13 13.41 13.07 13.17 12.91 13.07 13.06 12.77 13.118 12.76 13.19 13.06 12.83 13.03 12.50 13.10 13.29 12.70 12.4412 12.97 12.91 12.88 13.16 13.23 12.77 13.36 12.82 12.61 12.4416 13.24 13.01 12.91 12.94 12.86 12.66 12.89 12.46 12.44 12.2920 13.54 12.80 12.80 13.16 12.84 12.94 12.24 12.41 12.29 13.1624 13.27 13.14 12.83 12.71 13.19 12.60 12.87 12.41 12.96 12.874 13.07 13.47 14.20 13.33 13.00 13.10 12.81 13.04 12.61 13.168 13.02 13.28 13.14 12.83 12.71 13.00 12.62 12.40 12.41 12.5612 13.00 13.40 13.40 12.94 12.70 13.11 12.88 12.64 13.29 12.6016 13.09 13.18 13.00 12.53 12.33 12.73 12.24 12.34 12.67 12.6020 13.17 12.87 12.80 13.06 12.90 12.83 12.69 12.94 12.73 12.6324 13.49 13.20 13.50 12.69 12.90 12.59 12.63 12.99 12.72 13.06
Table 3.9: Errors (%) for data set Sonar (resp. 50, 100 and 150 epo
hs).

h

nh 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.02 49.47 48.49 24.90 24.78 23.17 24.37 23.82 24.04 24.11 24.50 24.264 48.63 45.77 23.65 23.27 23.68 23.05 23.70 24.06 23.82 23.82 23.156 49.18 45.67 23.61 22.96 23.53 22.28 23.61 22.98 24.18 21.73 23.428 48.97 43.22 22.96 22.40 24.28 23.08 22.72 22.98 24.04 22.81 23.5610 48.56 41.37 22.88 22.65 23.77 23.34 22.76 22.98 23.08 22.21 22.1212 50.65 43.73 23.17 23.03 23.66 24.18 22.36 22.81 23.13 22.81 22.962 48.36 36.71 24.64 24.02 24.16 23.99 23.51 24.64 24.06 23.56 23.584 49.90 35.36 23.44 24.52 24.33 22.40 24.47 24.04 24.35 23.58 23.776 49.30 37.74 23.41 23.51 23.49 24.52 23.00 22.45 23.15 23.37 23.138 49.04 35.53 24.06 22.86 22.84 24.35 22.81 23.82 22.12 23.44 22.4010 48.41 34.52 23.94 23.29 24.42 22.81 23.10 23.29 23.27 23.44 22.6712 49.81 31.42 23.80 23.08 23.08 22.74 23.87 22.74 21.32 21.61 22.142 50.82 31.63 25.53 24.23 25.31 24.06 24.33 24.98 24.42 25.41 23.734 50.48 28.10 24.52 24.52 24.45 24.06 23.85 23.17 23.56 23.58 23.896 50.00 27.81 23.92 23.08 23.27 22.26 23.99 23.29 22.14 23.51 23.088 49.86 29.88 24.18 22.33 22.67 22.67 23.00 23.05 23.32 22.84 21.9510 50.82 26.90 25.00 24.13 22.74 23.41 22.86 22.26 23.17 23.27 22.0712 49.95 25.51 23.61 24.52 23.15 23.25 22.67 22.88 22.00 22.07 22.60
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Table 3.10: Errors (%) for data set Wdb
 (resp. 40, 60 and 80 epo
hs).

h

nh 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.02 50.34 8.83 2.53 2.77 2.83 2.84 2.91 2.67 3.28 2.89 2.694 52.31 10.37 2.33 2.70 2.75 2.87 2.77 2.76 2.88 2.85 2.916 51.22 19.04 2.65 2.61 2.90 2.64 2.91 2.92 3.31 2.79 3.098 49.44 19.74 2.57 2.71 2.84 2.58 3.07 2.84 2.97 2.94 3.1910 46.88 21.80 3.01 2.77 2.78 2.97 2.90 2.59 3.28 2.95 2.982 51.54 10.71 2.79 2.97 3.05 2.97 2.72 2.94 3.07 3.06 2.984 51.16 11.46 2.80 2.83 3.06 3.01 3.06 3.04 2.93 3.02 3.146 49.32 11.48 3.07 2.91 3.06 3.06 2.81 3.04 3.02 3.25 3.168 47.58 9.74 2.95 2.83 2.97 3.07 2.97 2.88 3.06 3.07 3.1710 45.97 19.47 2.82 2.96 3.05 3.08 3.23 3.24 3.49 3.28 3.372 48.80 4.41 2.77 2.95 2.96 3.26 3.13 3.06 3.03 3.15 3.304 46.52 2.89 2.81 3.23 3.04 2.87 3.11 3.26 3.08 3.05 3.496 49.48 5.49 3.08 3.75 3.11 3.12 3.17 3.22 3.06 3.28 3.498 48.60 5.83 3.00 3.06 3.08 2.99 2.95 2.99 3.21 3.20 3.3510 48.58 6.11 2.92 2.91 3.08 3.06 3.05 3.36 3.34 3.40 3.35
Table 3.11: Errors (%) for data set Iris (resp. 40, 60 and 80 epo
hs).

h

nh 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.02 7.97 7.17 6.77 7.37 4.70 5.50 4.80 5.50 7.40 5.54 5.004 7.20 6.63 4.43 4.87 6.67 4.30 4.20 4.10 4.67 3.90 4.376 6.33 4.60 4.77 4.10 4.67 4.83 4.37 4.33 4.63 4.20 4.078 9.20 4.63 3.83 4.40 4.10 5.50 4.73 4.57 4.97 4.47 4.0010 7.27 4.24 4.70 4.40 4.03 4.53 4.23 4.37 4.50 4.27 4.532 5.07 4.80 5.87 8.40 6.37 6.60 6.60 6.37 4.60 5.40 5.704 5.23 3.67 4.67 4.10 5.00 3.97 4.47 3.80 4.23 4.53 4.036 5.07 4.50 4.27 3.93 3.97 3.97 3.80 4.40 4.07 4.20 4.438 4.40 3.87 4.07 4.27 3.97 3.87 4.20 4.50 4.13 4.40 4.1310 4.90 4.30 4.13 3.80 4.13 4.53 4.37 4.07 4.00 4.10 4.102 5.13 7.83 4.60 5.27 4.57 5.57 7.30 5.17 6.10 4.70 5.004 4.57 3.73 4.50 4.40 4.07 5.73 4.23 4.53 4.53 4.30 5.006 4.10 4.80 3.77 3.73 4.63 3.83 3.67 4.03 4.53 4.57 4.308 4.23 4.23 3.57 3.83 4.00 3.50 4.30 4.20 3.90 4.10 3.8310 4.13 4.23 4.10 3.93 4.10 3.80 4.57 4.00 3.87 3.73 3.80



3.3. OPTIMIZATION OF THE EEM ALGORITHM 83Table 3.12: Errors (%) for data set Wine (resp. 40, 60 and 80 epo
hs).
h

nh 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.04 46.41 8.54 2.28 2.30 2.47 2.33 2.64 2.14 2.56 2.056 34.92 2.61 2.44 2.84 2.42 2.59 2.59 2.28 2.28 1.868 29.30 2.28 2.19 2.25 2.36 2.19 2.14 2.22 2.16 2.4210 22.89 2.28 2.56 1.94 1.97 2.05 2.11 2.11 2.39 2.1612 17.89 2.28 2.50 2.36 2.39 2.78 2.30 2.64 2.00 2.2214 18.60 2.53 2.67 2.42 2.31 2.08 2.30 1.94 1.83 1.9716 17.75 2.45 2.36 2.33 2.22 1.94 2.33 2.42 1.91 2.024 6.77 2.16 2.95 2.28 2.42 2.50 2.05 2.45 2.47 2.896 2.25 2.64 2.28 2.39 2.39 2.22 2.39 2.36 2.31 2.538 3.79 2.33 2.42 2.19 2.44 2.89 2.64 1.88 2.78 2.1110 2.30 2.61 2.56 2.14 2.08 2.22 1.94 2.75 2.39 2.3612 2.81 2.39 2.61 2.36 2.56 2.30 2.42 2.45 2.16 2.1714 2.61 2.50 2.59 2.33 2.28 2.16 2.64 2.19 2.28 2.3916 2.56 2.36 2.30 2.28 2.22 2.45 2.22 2.44 2.61 2.284 2.30 2.47 2.53 2.47 2.81 2.17 2.81 2.78 3.01 3.066 2.92 2.64 2.64 2.81 2.56 2.33 2.59 1.88 2.36 2.848 2.67 2.42 2.61 2.64 2.42 2.44 2.84 2.67 2.50 2.6110 2.56 2.75 2.73 2.78 2.84 2.42 2.70 2.36 2.95 2.4412 2.39 2.64 2.59 2.47 2.61 2.25 2.78 2.87 2.39 2.0214 2.67 2.95 2.28 2.64 2.87 2.47 2.36 2.30 2.89 2.4216 2.39 2.59 2.64 2.89 2.31 2.42 2.75 2.53 2.87 2.70Table 3.13: Errors (%) for data set 2VowelsPB (resp. 200, 250 and 300 epo
hs).
h

nh 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.02 24.09 21.25 25.49 28.72 28.64 28.94 28.77 29.354 16.17 11.53 9.11 8.79 11.65 9.73 11.99 11.516 13.26 8.19 7.82 8.66 8.77 9.19 11.28 11.378 14.46 9.29 8.11 8.49 9.18 9.34 9.36 9.0510 14.71 8.88 8.51 8.85 8.35 9.70 9.61 8.3012 14.62 8.12 8.92 9.31 9.88 8.73 9.36 9.892 22.29 22.89 24.94 28.46 30.83 30.30 28.75 28.294 15.07 7.80 7.65 10.35 12.38 13.22 10.97 10.816 12.76 8.50 7.82 8.24 9.61 8.77 8.90 9.608 10.21 8.29 8.40 7.80 8.53 10.58 8.22 10.4310 11.65 7.76 7.64 7.58 8.21 9.08 9.89 10.1512 11.23 8.36 9.08 8.92 8.81 9.26 9.38 8.632 18.73 25.80 25.71 27.02 29.65 29.03 28.63 28.314 12.10 8.00 8.36 9.40 10.77 10.78 10.21 11.556 10.63 7.51 8.43 8.17 8.41 9.43 8.77 7.558 10.78 7.89 7.55 7.94 8.70 7.72 9.83 8.2610 10.68 8.39 8.08 8.05 9.76 8.31 9.37 8.5112 9.03 8.25 8.17 7.60 7.76 8.09 8.82 8.89



84 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMTable 3.14: Errors (%) for data set Olive (resp. 140, 200 and 260 epo
hs).
h

nh 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.010 6.65 6.53 6.34 6.30 6.03 6.15 6.05 6.27 5.92 6.10 5.9115 6.07 5.69 6.37 6.00 6.14 5.68 5.72 5.84 5.56 5.98 5.6020 5.92 6.11 5.94 5.99 5.68 5.70 5.75 5.74 5.76 5.74 5.7025 6.06 6.02 6.00 5.86 5.29 5.64 5.65 5.29 5.83 5.59 5.7830 5.81 5.86 5.73 5.74 5.58 5.93 5.70 5.85 5.38 5.88 5.6510 6.37 5.90 5.94 6.08 6.16 5.65 5.92 5.62 6.41 6.08 5.7415 5.89 5.46 5.48 5.70 5.77 5.37 5.71 5.40 5.57 5.39 5.5820 5.39 5.38 5.52 5.42 5.49 5.26 5.25 5.49 5.38 5.58 5.7425 5.60 5.84 5.50 5.31 5.04 5.47 5.45 5.36 5.19 5.34 5.4530 5.30 5.58 5.47 5.38 5.31 5.27 5.25 5.44 5.40 5.29 5.2810 6.12 6.23 6.18 6.46 5.90 6.23 6.36 5.90 6.10 6.13 6.3315 5.86 5.74 6.37 5.59 5.29 5.88 5.48 5.76 5.85 5.40 5.6020 5.70 5.69 5.29 5.54 5.74 5.96 5.95 5.71 5.79 5.66 5.4125 5.49 5.35 5.67 5.35 5.37 5.31 5.48 5.58 5.77 5.48 5.4030 6.08 5.86 5.45 5.42 5.46 5.46 5.31 5.69 5.28 5.80 5.39In Table 3.15 we present the values of h for the minimum 
lassi�
ation errors("Best h" 
olumn) and the value of h representative 5 of the underlined smallest
lassi�
ation errors ("Suggested h" 
olumn). We present also the values proposedfor ea
h data set by formula 3.17 ("Formula 3.17" 
olumn) and formula 3.18("Formula 3.18" 
olumn). In both formulas the N values 
orrespond to thenumber of elements of the training set (50% of the number of elements of thedata set given in 
olumn "# samples").The experiments 
learly show that, for small values of h, the 
lassi�
ationerrors are signi�
antly large and, therefore, the use of formulas like (3.17), usedfor density estimation, are not appropriate for the EEM algorithm. Figure 3.12shows (
rosses and open 
ir
les), the h values obtained in the experiments with alldata sets (ex
ept for data set Olive). In this �gure we 
an easily see the relationbetween the h values of the proposed formula 3.18 and the values obtained inthe experiments. For ea
h data set the 
rosses 
orrespond to the values of the5This "suggested h", hs, was obtained by averaging the error results using the followingformula: hs =
∑

hi

ei

/
∑

1
ei

, where ei are the smallest 
lassi�
ation errors (∼ 10, underlined forea
h experiment) and hi the respe
tive h values.



3.3. OPTIMIZATION OF THE EEM ALGORITHM 85Table 3.15: Values of h for ea
h data set driven by the experiments and de�nedby formulas 3.17 and 3.18.Data sets Classes # samples Best h Suggested h Formula3.18 Formula3.17Ionosphere 2 351 4.6 3.9 2.67 0.85Sonar 2 208 3.4 3.7 3.47 0.92Wdb
 2 569 1.4 1.7 2.10 0.78XOR-n 2 200 4.0 4.7 3.54 0.93Iris 3 150 4.0 3.6 5.00 1.05Wine 3 178 4.6 4.2 4.59 1.022VowelsPB 4 608 1.8 2.2 2.87 0.93XOR-n 4 200 5.2 5.0 5.00 1.07Olive 9 572 4.6 5.4 4.43 1.20"Suggested h" and the 
ir
les to the h values of the minimum 
lassi�
ation error.Based on the experimental eviden
e, we 
on
lude that the proposed for-mula 3.18 for the value of the smoothing parameter, h, of the entropy estimation,yields good results when 
ompared to existing formulas of h used for density es-timation. Also, the proposed formula, 
ontrary to the one proposed by Bowman,does not and 
annot depend on s, due to the iterative nature of the EEM-VLRalgorithm. We showed that it produ
es very good results using a set of exper-iments where the values proposed by our formula are mu
h 
loser to the bestones found empiri
ally.3.3.3 The Bat
h Sequential AlgorithmThe fa
t that, in the EEM algorithm, the entropy is estimated using the prob-ability density fun
tion estimation with the Parzen window method implies theuse of all available error samples to estimate its value. This fa
t for
es the useof the bat
h mode in the ba
k-propagation algorithm, limiting the use of the



86 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMsequential or sto
hasti
 mode whi
h would be, in some 
ases, more appropriate.Apart from the higher 
omplexity of the algorithm in bat
h mode, we knowthat this approa
h has some limitations over the sequential mode. This was thereason for us to try to 
ombine both modes when using entropi
 
riteria. Toover
ome the above mentioned limitation, we propose a new approa
h that 
om-bines these two modes (the bat
h and the sequential) trying to use their mutualadvantages. The proposed Bat
h-Sequential algorithm 
ombines the two meth-ods applied in the ba
k propagation learning algorithm: the sequential mode,also referen
ed as on-line or sto
hasti
 mode, where the update is made for ea
hsample of the training set, and the bat
h mode, where the update is performedafter the presentation of all samples of the training set. A brief referen
e to thepossibility of 
ombining both bat
h and sequential modes when training neuralnetworks was made in [21℄.We said, in Chapter 2, that the sequential mode of weight updating leadsto a sample-by-sample sto
hasti
 sear
h in the weight spa
e implying that itbe
omes less likely for the ba
k-propagation algorithm to be trapped in lo
alminima [80℄. However, we still need some samples to estimate the entropy, andthis limits the use of the sequential mode. One of the advantages of the bat
hmode is that the gradient ve
tor is estimated with more a

ura
y, guaranteeingthe 
onvergen
e to, at least, a lo
al minima.In order to make use of the advantages of both modes and also to speedup thealgorithm, we developed a bat
h-sequential algorithm 
onsisting on the splittingof the training set in several groups that are presented to the algorithm in asequential way. In ea
h group we apply the bat
h mode.Let Ts be the training set of a given data set and Tsj the subsets obtainedby randomly dividing Ts in several groups with an equal number of samples,su
h as
|Ts| = n +

L
∑

j=1

|Tsj|, (3.19)where L is the number of subsets and n the remainder. This division is performed
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h epo
h of the learning phase. Leaving, in ea
h epo
h, some samples outof the learning pro
ess (when n 6= 0) is not signi�
ant be
ause those sampleswill most likely be in
luded in the next epo
h. The partition of the trainingset in subsets redu
es the probability of the algorithm getting trapped in lo
alminima sin
e it is performed in a random way. The subsets are sequentiallypresented to the learning algorithm, whi
h applies to ea
h one, in bat
h mode,the respe
tive ba
k-propagation and subsequent weight update. The pseudo
ode for the Error Entropy Minimization Bat
h-Sequential algorithm (EEM-BS)is presented in Table 3.16.Table 3.16: Pseudo-
ode for the EEM-BS Algorithm.For k:=1 to number of epo
hsCreate L subsets of Ts.For j:=1 to LCompute the error entropy gradient of Tsj applying formula 3.11.Perform weight update.End ForEnd ForOne of the advantages in using the bat
h-sequential algorithm is the de
reas-ing of the algorithm 
omplexity. The 
omplexity of the original EEM algorithm,due to formulas 3.10 and 3.11, is O(|Ts|2). We 
learly see that, for large trainingsets, the algorithm is highly time 
onsuming. With the EEM-BS algorithm the
omplexity is proportional to:
L

( |Ts|
L

)2

. (3.20)Therefore, the 
omplexity ratio of both algorithms is:
|Ts|2

L( |Ts|
L )2

= L, (3.21)whi
h means that, in terms of 
omputational pro
essing time, we a
hieve a redu
-tion proportional to L. For a 
omplete experiment, similar to the one presentedin the next paragraph with the data set "Olive", we redu
ed the pro
essing timefrom about 30 to 6 minutes in our ma
hine.



88 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMThe number of subsets, L, is determined by the size of the data set. If, in agiven problem, the training set has a large number of data samples, we 
an usea higher number of subsets than if we have a small training set. We re
ommendthe division of the training set in a number of subsets with a number of samplesnot less than 40, even though we sometimes got good results with less elements.In order to perform the experiments with the bat
h-sequential algorithm, wetried to use the EEM algorithm with adaptive learning rate (EEM-VLR). Letus remind that EEM-VLR is based on the use of a global variable learning rateduring the training phase, as a fun
tion of the error entropy value in 
onse
utiveiterations. Sin
e in EEM-VLR we 
ompare HR2 of a 
ertain epo
h with thesame value in the previous one, we 
annot 
ombine it with the bat
h-sequentialalgorithm be
ause, in ea
h epo
h, we use di�erent sets of samples and, by thissimple fa
t, we would have di�erent values of HR2. To over
ome this limitation,and also with the goal of a
hieving a faster 
onvergen
e, we implemented asimilar pro
ess, also using variable learning rate, but this time, the variationof the learning rate is done for ea
h neural network weight by 
omparing therespe
tive gradient in 
onse
utive iterations (EEM-BS(SA)). This approa
h wasalready used in ba
k-propagation with MSE [177℄. We also used, for the samepurpose of speeding up the 
onvergen
e, the 
ombination of the bat
h-sequentialalgorithm with the resilient ba
k-propagation [156℄, a
hieving very good results(EEM-BS(RBP)). Examples of the training phase for the three di�erent methods,with the data set "Olive", are depi
ted in Fig.3.14.Experiments In order to establish the validity of the proposed algorithm weperformed several experiments, 
omparing the results obtained with the EEM-BS algorithm with those obtained with the simple EEM-VLR algorithm. Weused the data sets Ionosphere, Olive, Wdb
 and Wine.In all experiments we used [I:nh:O℄ MLP's, where I is the number of inputneurons, nh is the number of neurons in the hidden layer and O is the number of
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Figure 3.14: Training Error 
urves for the EEM-BS and the two 
ombinations:EEM-BS(SA) and EEM-BS(RBP).output neurons. We applied the 2-fold 
ross validation method. The experimentsfor ea
h data set were performed varying the number of neurons in the hiddenlayer, the number of subsets used and the number of epo
hs. In Table 3.17 wepresent the results obtained with the EEM-BS algorithm with 4 and 8 subsets (5and 8 for the Wdb
 data set). Ea
h result is the mean error of 20 repetitions. InTable 3.18 we only present the best results for ea
h experiment with the EEM-BS algorithm and the 
omparison with the results obtained with the EEM-VLRalgorithm.The results presented in Table 3.17 show that the �nal errors, for ea
h dataset, do not present a signi�
ant variation a

ording to the 
hara
teristi
s ofthe experiment (epo
hs, nh). Also, the errors obtained, in ea
h data set, withdi�erent number of subsets are very similar.The 
omparison of the results obtained with both algorithms (EEM-BS andEEM-VLR), presented in Table 3.18, show that they are similar and, in some
ases, the ones obtained by EEM-BS are better than those of EEM-VLR. Sin
ethe best results were obtained with di�erent neural network 
omplexities, wepresent in 
olumn Tpe the pro
essing time per epo
h for ea
h algorithm. It is
lear that the 
omputational time 
an be redu
ed by a 
onsiderable fa
tor whenusing the EEM-BS algorithm.In this subse
tion we saw that, the 
ombination of sequential and bat
h
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riteria in the learning phase 
an pro�t from theadvantages of both methods. We show, using experiments, that this is a validapproa
h that 
an be used to speed-up the training phase, maintaining a goodperforman
e, both in a
hieved error rate and 
omputational time.



3.3. OPTIMIZATION OF THE EEM ALGORITHM 91Table 3.17: Errors and standard deviations of the experiments performed withEEM-BS in data sets Ionosphere, Olive, Wdb
 and Wine, for di�erent valuesof nh and di�erent number of epo
hs and subsets (L).IonosphereL=4 L=8Epo
hs Epo
hs
nh 60 80 100 120 60 80 100 1204 12.81(1.08) 13.06(1.10) 12.49(1.52) 13.0(1.57) 12.40(0.82) 13.17(1.32) 12.29(1.16) 12.57(1.36)6 12.64(1.13) 12.56(0.99) 12.39(0.96) 12.64(1.07) 12.81(1.01) 12.59(1.10) 12.63(1.46) 12.59(1.25)8 13.14(1.30) 12.67(1.42) 12.27(1.23) 12.54(1.16) 12.52(1.03) 12.79(0.88) 12.00(1.09) 12.09(1.23)10 12.53(1.40) 12.36(0.91) 12.77(1.49) 12.94(1.26) 12.64(1.18) 12.66(1.27) 12.46(1.18) 12.89(1.01)12 12.40(1.24) 12.46(0.94) 12.67(1.46) 12.66(1.24) 13.00(1.12) 12.36(1.45) 13.09(1.42) 12.31(1.10)OliveL=4 L=8Epo
hs Epo
hs
nh 100 140 180 220 100 140 180 22010 5.73(0.70) 5.65(0.73) 5.71(0.76) 5.79(0.63) 6.42(0.61) 5.67(0.68) 5.33(0.52) 5.66(0.47)20 5.83(0.69) 5.24(0.49) 5.48(0.56) 5.42(0.67) 6.06(0.74) 5.81(0.88) 5.24(0.70) 5.55(0.70)30 5.65(0.75) 5.17(0.51) 5.38(0.56) 5.24(0.52) 6.11(0.67) 5.62(0.67) 5.45(0.87) 5.35(0.63)40 5.85(0.82) 5.48(0.49) 5.29(0.51) 5.57(0.57) 6.47(0.60) 5.85(0.73) 5.64(0.75) 5.54(0.69)Wdb
L=5 L=8Epo
hs Epo
hs
nh 40 60 80 100 40 60 80 1004 2.63(0.47) 2.47(0.49) 2.58(0.56) 2.54(0.51) 2.58(0.40) 2.41(0.42) 2.54(0.54) 2.48(0.49)6 2.66(0.70) 2.66(0.58) 2.60(0.45) 2.59(0.66) 2.54(0.53) 2.51(0.50) 2.47(0.55) 2.51(0.54)8 2.51(0.52) 2.56(0.49) 2.46(0.43) 2.54(0.47) 2.44(0.58) 2.46(0.52) 2.43(0.48) 2.69(0.57)10 2.52(0.41) 2.31(0.35) 2.52(0.42) 2.49(0.34) 2.35(0.48) 2.77(0.51) 2.46(0.37) 2.90(0.57)12 2.39(0.48) 2.39(0.40) 2.50(0.53) 2.64(0.62) 2.47(0.49) 2.61(0.45) 2.63(0.60) 2.67(0.55)WineL=4 L=8Epo
hs Epo
hs
nh 20 40 60 80 20 40 60 808 2.61(0.82) 2.22(0.81) 2.42(0.89) 2.33(0.88) 2.45(0.69) 2.0(0.85) 2.67(0.85) 2.67(1.25)10 2.36(0.99) 2.61(1.17) 2.59(0.92) 2.58(1.32) 2.59(0.84) 2.16(1.27) 2.28(0.15) 2.50(0.88)12 2.4(1.15) 2.36(1.15) 2.17(0.66) 2.19(0.73) 2.61(1.28) 2.05(0.86) 2.33(0.64) 1.94(0.76)14 2.28(0.64) 2.08(1.01) 2.56(0.69) 2.50(0.88) 2.50(0.82) 2.16(1.11) 2.58(0.99) 2.36(1.15)16 2.75(0.89) 2.03(0.53) 1.88(0.80) 2.25(0.91) 2.33(1.13) 2.42(1.15) 1.88(0.86) 2.16(1.05)
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Table 3.18: Summary of the best results of EEM-BS and 
omparison withEEM-VLR (Tpe: Time per epo
h ×10−3 se
.).IonosphereAlgorithm Error (Std) L n_h Epo
hs TpeEEM-VLR 12.06 (1.11) - 12 40 16.7EEM-BS 12.27 (1.23) 4 8 100 6.4EEM-BS 12.00 (1.09) 8 8 100 4.8OliveAlgorithm Error (Std) L n_h Epo
hs TpeEEM-VLR 5.04 (0.53) - 25 200 77.7EEM-BS 5.17 (0.51) 4 30 140 17.6EEM-BS 5.24 (0.70) 8 20 180 12.8Wdb
Algorithm Error (Std) L n_h Epo
hs TpeEEM-VLR 2.33 (0.37) - 4 40 38.7EEM-BS 2.31 (0.35) 5 10 60 13.6EEM-BS 2.35 (0.48) 8 10 40 9.6WineAlgorithm Error (Std) L n_h Epo
hs TpeEEM-VLR 1.83 (0.83) - 14 40 5.8EEM-BS 1.88 (0.80) 4 16 60 3.2EEM-BS 1.88 (0.86) 8 16 60 2.5



Chapter 4
Clustering with Entropy
In the previous 
hapter we have applied entropi
 
on
epts to neural network su-pervised 
lassi�
ation. In this 
hapter we will fo
us on unsupervised data 
las-si�
ation, i.e. data 
lustering. The motivation for the new 
lustering algorithmpresented here 
ame from our goal to perform an entropi
 task de
omposition formodular neural networks (this subje
t will be dis
ussed in the following 
hapter).Our new 
lustering algorithm [168℄ is a hierar
hi
al algorithm, a stepwise
lustering method, usually based on dissimilarity measures between obje
ts orsets of obje
ts from a given data set, but now based on a new entropi
 dissimilar-ity measure 1. The most 
ommon dissimilarity measures are distan
e measures.The derived proximity matri
es 
an be used to build graphs, whi
h provide thebasi
 stru
ture for some 
lustering methods. We present in this 
hapter a newproximity matrix based on the new entropi
 dissimilarity measure and also anew 
lustering algorithm that builds layers of subgraphs based on this matrix,and uses them and a hierar
hi
al agglomerative 
lustering te
hnique to form the
lusters. Our approa
h 
apitalizes on both a graph stru
ture and a hierar
hi
al
onstru
tion. Moreover, by using entropy as a proximity measure we are able,1In our proposed algorithm we use Rényi's quadrati
 entropy be
ause of its simpli
ity;however, one 
ould use other entropi
 measures as well.93



94 CHAPTER 4. CLUSTERING WITH ENTROPYwith no assumption about the 
luster shapes, to 
apture the lo
al stru
ture ofthe data, for
ing the 
lustering method to re�e
t this stru
ture. We presentseveral experiments performed on arti�
ial and real data sets that provide ev-iden
e of the superior performan
e of this new algorithm when 
ompared with
ompeting ones.Some examples of the appli
ation of entropy and information-theoreti
 
on-
epts in 
lustering are the minimum entropi
 
lustering [121℄, entropi
 span-ning graphs 
lustering [81℄ or entropi
 subspa
e 
lustering [29℄. In some worksthe entropi
 
on
epts are usually related to measures similar to the Kullba
k-Leibler divergen
e. In some re
ent works several authors used entropy as ameasure of proximity or interrelation between 
lusters. Examples of these algo-rithms are those proposed by Jenssen [97℄ or Gok
ay [63℄, that use a so-
alledBetween-Cluster Entropy, and the one proposed by Lee [119℄, [120℄ that uses theWithin-Cluster Asso
iation. Despite the good results in several data sets, thesealgorithms are heavily time 
onsuming and they start by sele
ting some randomseeds as �rst 
lusters whi
h may produ
e very di�erent results in the �nal 
lustersolution depending on the number of seeds 
hosen and their "position". If noneof the elements of a real 
luster is sele
ted as seed, those elements probably willbe in
luded in other built 
lusters. These algorithms usually give good resultsfor 
ompa
t and well separated 
lusters.4.1 What is Clustering?Clustering deals with the pro
ess of �nding possible di�erent groups in a givenset, based on similarities or di�eren
es among their obje
ts. This simple de�ni-tion does not 
onvey the ri
hness of su
h a wide area of resear
h. What are thesimilarities and what are the di�eren
es? How do the groups di�er? How 
anwe �nd them? These are examples of some basi
 questions, none with an uniqueanswer. There is a wide variety of te
hniques to do 
lustering. Results are notunique and they always depend on the purpose of the 
lustering. The same data
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an be 
lustered with di�erent a

eptable solutions. Hierar
hi
al 
lustering, forexample, gives several solutions depending on the tree level 
hosen for the �nalsolution.There are algorithms based on similarity or dissimilarity measures betweenthe obje
ts of a set, like sequential and hierar
hi
al algorithms; others, are basedon the prin
iple of fun
tion approximation, like fuzzy 
lustering or density basedalgorithms; yet others, are based on graph theory or 
ompetitive learning. Inthis paper we 
ombine hierar
hi
al and graph approa
hes and present a new 
lus-tering algorithm based on a new proximity matrix that is built with an entropi
measure. With this measure, 
onne
tions between obje
ts are sensitive to thelo
al stru
ture of the data, a
hieving 
lusters that re�e
t that same stru
ture.In the following subse
tions we present some basi
 
on
epts and notationthat serve as the basis to present our algorithm and we make an overview ofsome of the most popular 
lustering algorithms.4.1.1 Proximity MeasuresLet X be the data set, X = {xi}, i = 1, 2, ..., N , where N is the number ofobje
ts and xi an l-dimensional ve
tor representing ea
h obje
t. We de�ne S,an s-
lustering of X, as a partition of X into s subsets C1, C2, ..., Cs, obeyingthe 
onditions: Ci 6= ⊘, i = 1, ..., s; ∪s
i=1Ci = X and Ci ∩ Cj = ⊘, i 6= j, i, j =

1, ..., s. Ea
h ve
tor (point), given these 
onditions, belongs to a single subset(
luster). Our proposed algorithm uses this so 
alled hard 
lustering. (Thereare algorithms, like those based on fuzzy theory, in whi
h a point has degreesof membership for ea
h 
luster.) Points belonging to the same 
luster have ahigher degree of similarity with ea
h other than with any other point of theother 
lusters. This degree of similarity is usually de�ned using similarity (ordissimilarity) measures.The most 
ommon dissimilarity measure between two real-valued ve
tors x
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,
dp(x,y) =

(

l
∑

i=1

wi|xi − yi|p
)

1
p

, (4.1)where xi and yi are the ith 
oordinates of x and y, i = 1, ..., l, and wi ≥ 0 isthe ith weight 
oe�
ient. The unweighted (w = 1) lp metri
 is also known asMinkowski distan
e of order p (p ≥ 1). Examples of this distan
e are the well-known Eu
lidian distan
e, obtained by setting p = 2, the Manhattan distan
e,
p = 1, and the l∞ or Chebyshev distan
e.4.1.2 Overview of Clustering AlgorithmsProbably the most used 
lustering algorithms are the hierar
hi
al, agglomerativealgorithms. They 
reate, by de�nition, a hierar
hy of 
lusters from the dataset. Hierar
hi
al 
lustering is widely used in biology, medi
ine, and also in
omputer s
ien
e and engineering. (For an overview on 
lustering te
hniquesand appli
ations see [20,93�95℄). Hierar
hi
al agglomerative algorithms start byassigning ea
h point to a single 
luster and then, usually based on dissimilaritymeasures, pro
eed to merge small 
lusters into larger ones in a stepwise manner.The pro
ess ends when all the points in the data set are members of a single
luster. The resulting hierar
hi
al tree de�nes the 
lustering levels. Examples ofhierar
hi
al 
lustering algorithms are CURE [68℄ and ROCK [69℄ developed bythe same resear
hers, AGNES [110℄, BIRCH [206℄, [207℄ and Chameleon [108℄.The merging phase of the agglomerative algorithms di�ers in the sense that,depending on the measures used to 
ompute the similarity or dissimilarity be-tween 
lusters, di�erent merge results 
an be obtained. The most 
ommon meth-ods to perform the merging phase are:

• Single Link Method: the dissimilarity between two 
lusters is measured bythe distan
e between the two 
losest ve
tors.
• Complete Link Method: the dissimilarity between two 
lusters is measuredby the distan
e between the two most distant ve
tors.
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• Centroid Method: the dissimilarity between two 
lusters is measured by thedistan
e between their 
entroids (usually the mean ve
tors).
• Ward's Method: two 
lusters are merged if the sum of all the distan
esbetween the resulting 
entroid and the joined ve
tors is the smallest one.The Single Link method usually 
reates elongated 
lusters and the Com-plete Link usually results in more 
ompa
t 
lusters. The Centroid method a
tsin a midway basis, yielding 
lusters somewhere between the two previous ones.Ward's method is 
onsidered very e�e
tive in produ
ing balan
ed 
lusters; how-ever, it has several problems dealing with outliers and elongated 
lusters. In [102℄one 
an �nd a probabilisti
 interpretation of these 
lassi
al agglomerative meth-ods.Another type of algorithms are the ones based on graphs and graph theory.A graph is de�ned as an ordered pair G = (V,E), where V = {vi}, i = 1, ..., Nis a set of verti
es and E is a set of edges 
onne
ting pairs of verti
es. An edge
onne
ting vi and vj is denoted by eij . One 
an have dire
ted or undire
tedgraphs depending on whether or not the order of vi and vj is important. Usingdire
ted graphs originates double edges between a pair of verti
es, one in ea
hdire
tion. Unweighted graphs are those where there is no 
ost asso
iated withea
h edge. If there is a path in G where the �rst and last verti
es 
oin
ide thenthis path is 
alled a loop or 
ir
le. A subgraph G′ = (V ′, E′) of G is a graphwith V ′ ⊆ V and E′ ⊆ E, where edges of E′ 
onne
ts pairs of verti
es from V ′.A similarity graph is a graph based on the similarity matrix of a spe
i�
 dataset.Clustering algorithms based on graph theory are usually divisive algorithms,meaning that they start with a single highly 
onne
ted graph (that 
orrespondsto a single 
luster) that is then splited using 
onse
utive 
uts. A 
ut in a graph
orresponds to the removal of a set of edges that dis
onne
ts the graph. Aminimum 
ut (min-
ut) is the removal of the smallest number of edges thatprodu
es a 
ut. The result of a 
ut in the graph 
auses the splitting of one
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luster into, at least, two 
lusters. An example of a min-
ut 
lustering algorithm
an be found in [99℄. Clustering algorithms based on graph theory have existedsin
e the early 1970's. They use the high 
onne
tivity in similarity graphs toperform 
lustering ( [130℄, [131℄). More re
ent works su
h as [75℄, [76℄ and [196℄also perform 
lustering using highly 
onne
ted graphs and subsequent partitionsby edge 
utting to obtain subgraphs. Chameleon [108℄, mentioned earlier as ahierar
hi
al agglomerative algorithm, also uses a graph-theoreti
 approa
h. Itstarts by 
onstru
ting a graph, based on k-nearest neighbors, then it performsthe partition of the graph into several 
lusters (using the hMetis [109℄ algorithm)su
h that it minimizes the edge 
ut. After �nding initial 
lusters, it repeatedlymerges these small 
lusters, using relative 
luster inter
onne
tivity and 
losenessmeasures.Graph 
utting is also used in spe
tral 
lustering, 
ommonly applied in imagesegmentation and, more re
ently, in web and do
ument 
lustering and bioinfor-mati
s. The rationale of spe
tral 
lustering is to use the spe
ial properties of theeigenve
tors of a Lapla
ian matrix as the basis to perform 
lustering. Fidler [52℄was one of the �rst to show the appli
ation of eigenve
tors to graph partitioning.The Lapla
ian matrix is based on an a�nity matrix, A, built with a similaritymeasure. The most 
ommon similarity measure used in spe
tral 
lustering is
Aij = exp (−d2

ij/2σ2), where dij is the Eu
lidian distan
e between ve
tors xi and
xj and σ is a s
aling parameter. With matrix A, the Lapla
ian matrix L is
omputed as L = D − A, where D is the diagonal matrix whose elements arethe sums of all row elements of A.There are several spe
tral 
lustering algorithms that di�er in the way theyuse the eigenve
tors in order to perform 
lustering. Some resear
hers use theeigenve
tors of the "normalized" Lapla
ian matrix [31℄ (or a similar one), inorder to perform the 
utting usually using the se
ond smallest eigenve
tor [175℄,[103℄, [39℄. Others, use the highest eigenve
tors as input to other 
lusteringalgorithm [141℄, [133℄. One of the advantages of this last approa
h is that, by
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tor, enough information 
an be provided to obtainmore than two 
lusters as opposed to 
utting strategies where 
lustering must beperformed re
ursively to obtain more than two 
lusters. A 
omparison of severalspe
tral 
lustering algorithms 
an be found in [187℄.The pra
ti
al problems en
ountered with graph-
utting algorithms are ba-si
ally related to the belief that the subgraphs produ
ed by 
utting are alwaysrelated to real 
lusters. This assumption is frequently true with well separated
ompa
t 
lusters; however, in data sets with, for example, elongated 
lusters,this may not o

ur. Also, if we use weighted graphs, the 
hoi
e of the thresholdto perform graph partition 
an produ
e very di�erent 
lustering solutions.Other 
lustering algorithms use the existen
e of di�erent density regions ofthe data to perform 
lustering. One of the density based 
lustering algorithms,apart from the well-known DBS
an [48℄, is the Mean Shift algorithm. MeanShift was introdu
ed by Fukunaga [58℄, redis
overed in [30℄ and also studied inmore detail by Comani
iu [32℄, [33℄, with appli
ations to image segmentation.The original algorithm, with a �at kernel, works this way: in ea
h iteration, forea
h point P , the 
luster 
enter is obtained by repeatedly 
entering the kernel(originally 
entered in P ) by shifting it in the dire
tion of the mean of the setof points inside the same kernel. The pro
ess is similar if we use a Gaussiankernel. The mean shift ve
tor is aligned with the lo
al gradient estimate andde�nes a path leading to a stationary point in the estimated density [33℄. Thisalgorithm seeks modes in the sample density estimation and so is 
onsidered tobe a gradient mapping algorithm [30℄. Mean Shift has some very good resultsin image segmentation and 
omputer vision appli
ations but, like other densitybased algorithms, it builds 
lusters with the assumption that ea
h of them isrelated to a mode of the density estimation. For problems like the one depi
ted inFig. 4.1a, with 
lusters of di�erent densities very 
lose to ea
h other, this kind ofalgorithm usually has di�
ulties in performing the right partition be
ause it �ndsonly one mode in the density fun
tion. (If we use a smaller smoothing parameter



100 CHAPTER 4. CLUSTERING WITH ENTROPYit will �nd several lo
al modes in the low density region). This behavior is alsoobservable in data sets like the double spiral data set depi
ted in Fig. 4.10.
(a) The original data set. (b) The expe
ted 
luster-ing solution. (
) Density fun
tion.Figure 4.1: An example of a data set di�
ult to 
luster using density based
lustering algorithms like Mean Shift.Another example of a 
lustering algorithm is the path-based pairwise 
luster-ing algorithm [53, 54℄. This 
lustering method also groups obje
ts a

ording totheir 
onne
tivity. It uses a pairwise 
lustering 
ost fun
tion with a dissimilar-ity measure that emphasizes 
onne
tedness in feature spa
e to deal with 
luster
ompa
tness. This simple approa
h gives good results with 
ompa
t 
lusters.To deal with stru
tured 
lusters a new obje
tive fun
tion, 
ontaining the sameproperties of the pairwise 
ost fun
tion, is used. This new obje
tive fun
tion isbased on the e�e
tive dissimilarity, the length of the minimal 
onne
ting pathbetween two obje
ts, and is the basis for the path-based 
lustering. Some of theappli
ations of this 
lustering algorithm are edge dete
tion and texture imagesegmentation.4.2 The Clustering Algorithm ComponentsOne of the main 
on
erns when we started sear
hing for an e�
ient 
lusteringalgorithm was to �nd an extremely simple idea, based on very simple prin
iples,that didn't need 
omplex measures of intra- or inter-
luster asso
iation. Keepingthis in mind, we performed 
lustering tests involving several types of individuals
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luding 
hildren) in order to grasp the mental pro
ess of data 
lustering. Theresults and analysis of these tests 
an be found in Appendix B. One of themost important 
on
lusions from our tests is that human 
lustering exhibitssome balan
e between the importan
e given to lo
al (e.g., 
onne
tedness) andglobal (e.g., stru
turing dire
tion) features of the data, a fa
t that we tried tore�e
t in our algorithm. The tests also provided majority 
hoi
es of 
lusteringsolutions against whi
h one 
an 
ompare the 
lustering algorithms. Some of theexperiments performed with these data sets are presented later.In the following we introdu
e two new 
lustering algorithm 
omponents: anew proximity matrix and a new 
lustering pro
ess. We �rst present the newentropi
 dissimilarity measure and, based on that, the 
omputing pro
edure of alayered entropi
 proximity matrix; afterwards we present the LEGClust (LayeredEntropi
 subGraphs Clustering) algorithm.4.2.1 The Entropi
 Proximity MatrixGiven a set of ve
tors X = {x1,x2, ..,xN}, xi ∈ R
m, 
orresponding to a set ofobje
ts, ea
h element of the dissimilarity matrix A, A ∈ R

N×N , is 
omputedusing a dissimilarity measure Ai,j = d(xi,xj). Using this dissimilarity matrixone 
an build a proximity matrix, L, where ea
h ith line represents the data setpoints, ea
h jth 
olumn the proximity order (1st 
olumn=
losest point ... last
olumn=farthest point) and ea
h element the point referen
e that, relative torow point i, is in the jth proximity position. An example of a proximity matrix,is shown in Table 4.5 (to be des
ribed in detail later on). The points referen
edin the �rst 
olumn (L1) of the proximity matrix are those that have the smallestdissimilarity value relative to the 
orresponding row elements.Ea
h 
olumn of the proximity matrix is 
onsidered one layer of 
onne
tions.We 
an use this proximity matrix to build subgraphs for ea
h layer, where ea
hedge is the 
onne
tion between a point and the 
orresponding point of that layer.If we use a proximity matrix based on a dissimilarity matrix built with the
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lidian distan
e to 
onne
t ea
h point with its 
orresponding L1 point (�rstlayer) we get a subgraph similar to the one presented in Fig. 4.2b for the dataset of Fig. 4.2a. We 
all the 
lusters formed with this �rst layer 
onne
tions theelementary 
lusters. Ea
h of these resulting elementary 
lusters (not 
onsideringdire
ted edges) is a Minimum Spanning Tree.

(a) Spiral data set.

(b) Conne
tions based on Eu
lidian dis-tan
e. (
) "Ideal" 
onne
tions.Figure 4.2: Conne
tions of the �rst layer using Eu
lidian distan
e and the"ideal" 
onne
tions for the spiral data set.As we 
an see from Fig. 4.2b, these 
onne
tions have no relation with thestru
ture of the given data set. In Fig. 4.2
 we present what one should expe
tto be the "ideal" 
onne
tions. These ideal 
onne
tions should, in our judgement,re�e
t the lo
al stru
turing dire
tion of the data. However, using 
lassi
al dis-
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e measures, we are not able to a
hieve this behavior. As we will see bellow,entropy will allow us to do it. The main idea behind the entropi
 dissimilaritymeasure is to make the 
onne
tions follow the lo
al stru
ture of the data set,where the meaning of "lo
al stru
ture" will be 
lari�ed later. From now on wewill take "lo
al stru
ture" or "lo
al stru
turing" in an intuitive 
ommon-sensebasis, as a designation of a prevailing dire
tion in the data. This 
on
ept 
an beapplied to data sets with any number of dimensions.Let us 
onsider the set of points depi
ted in Fig. 4.3. These points are in asquare grid ex
ept for points P and U . For simpli
ity we use a two-dimensionaldata set, but the analysis is valid for higher dimensions. Let us denote:
• K = {ki}, i = 1, 2, ..,M , the set of the M nearest neighbors of P ;
• dij , the di�eren
e ve
tor between points ki and kj , i, j = 1, 2, ..,M , i 6= j,that we will 
all the 
onne
ting ve
tor between those points;
• pi, the di�eren
e ve
tor between point P and ea
h of the M -nearest neigh-bors ki.We wish to �nd the 
onne
tion between P and one of its neighbors thatbest re�e
ts the lo
al stru
ture. Without making any 
omputation and just by"looking" at the points we 
an say, despite the fa
t that the shortest 
onne
tionis p1, that the ideal 
andidates for "best 
onne
tion" are those 
onne
ting Pwith Q or with R be
ause they are the ones that best re�e
t the stru
turingdire
tion of the data points.Let us represent all dij 
onne
ting ve
tors translated to a 
ommon origin asshown in Fig. 4.4a. We will 
all this an M-neighborhood ve
tor �eld. An M-neighborhood ve
tor �eld 
an be interpreted as a probability density fun
tion in
orresponden
e with the two-dimensional histogram shown in Fig. 4.4b, wherein ea
h bin we plot the number of o

urren
es of dij ve
tor ends. This histogramestimates the probability density fun
tion of dij 
onne
tions. It 
an be inter-
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p1

k1

P

k2d12

9−nearest neighbors of P

R
P

Q
U

Figure 4.3: A simple example with the 
onsidered M-nearest neighbors of point
P , M = 9; the M-neighborhood of P 
orresponds to the dotted region.preted as a Parzen window estimate of the pdf using a re
tangular kernel. Themain elongation dire
tion of the pdf de�nes our "stru
turing dire
tion".

(a) (b)Figure 4.4: The M-neighborhood ve
tor �eld of point P (a) and the histogramrepresentation of the probability density fun
tion (b).The probability density fun
tion asso
iated with point P , re�e
ts, in this
ase, an horizontal M-neighborhood stru
ture and, therefore, we expe
t to 
hoosean "ideal" 
onne
tion for P that follows this horizontal dire
tion. Although thedire
tion is an important fa
tor we should also 
onsider the size of the 
onne
-tions and avoid the sele
tion of 
onne
tions between points far apart. Takingthis into 
onsideration, we 
an also see that in terms of the probability densityfun
tion, the small 
onne
ting ve
tors are the most probable ones.Now, sin
e we want to 
hoose a 
onne
tion for point P based on rankingall possible 
onne
tions, we have to 
ompare all the probability density fun
-tions resulting from adding ea
h 
onne
tion pi to the set of 
onne
tion of the
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tor �eld. One of the measures that 
ompares probabilitydensity fun
tions is an entropi
 measure and we will use it to rank all the pos-sible 
onne
tions pi. Basi
ally, what we are going to do, is to rank 
onne
tions
pi a

ording to the variation introdu
ed by ea
h one in the probability densityfun
tion. The 
onne
tion that introdu
es less disorder into the system, thatleast in
reases the entropy of the system, will be top ranked as the stronger
onne
tion, followed by the other M − 1 
onne
tions in de
reasing order.Let D = {dij}, i, j = 1, 2, ..,M , i 6= j. Let H(D, pi) be the entropy asso
iatedwith 
onne
tion pi, the entropy of the set of all 
onne
tions dij plus 
onne
tion
pi, su
h that

H(D, pi) = H({D} ∪ {pi}), i = 1, 2, ..,M. (4.2)This entropy is our dissimilarity measure. We 
ompute, for ea
h point, the
M possible entropies and build an entropi
 dissimilarity matrix and the 
orre-sponding entropi
 proximity matrix (examples are shown in Tables 4.4 and 4.5).The elements of the �rst 
olumn of the proximity matrix are those 
orrespondingto the points having the smallest entropi
 dissimilarity value (strongest entropi

onne
tion), followed by those in the subsequent layers in de
reasing order.We show, in Table 4.1, the dissimilarity and proximity values for point P andtheir neighbors depi
ted in Fig. 4.3. We use Rényi's quadrati
 entropy 
omputedas explained in se
tion 2.2.2. The points of Fig. 4.3 are referen
ed left to rightand top to bottom as 1 to 14.In Fig. 4.5 we show the �rst layer 
onne
tions, where we 
an see the di�eren
ebetween using a dissimilarity matrix based on 
lassi
 distan
e measures su
has the Eu
lidian distan
e (Fig. 4.5a) and a dissimilarity matrix based on ourentropi
 measure (Fig. 4.5b).The 
onne
tions derived by the �rst layer, when using the entropi
 measure,
learly follow an horizontal line and, despite the fa
t that point k1 is the 
losestone to P in the Eu
lidian sense, the stronger 
onne
tion for point P is the
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 dissimilarities and proximities relative to point P (10).(a) Entropi
 dissimilarities.Point 1 2 3 4 5 6 7 8 9 10 11 12 13 1410 8.83 8.73 8.72 8.73 8.83 8.66 8.58 8.58 8.66(b) Entropi
 proximities.LayersPoint L1 L2 L3 L4 L5 L6 L7 L8 L910 11 9 12 8 3 4 2 5 1
(a) (b)Figure 4.5: Di�eren
e on Elementary Clusters using a dissimilarity matrixbased on Eu
lidian distan
e (a) and on our Entropi
 measure (b).
onne
tion between P and R, as desired. This di�erent behavior 
an also beseen in the spiral data set depi
ted in Fig. 4.6. The 
onne
tions that produ
e theelementary, �rst layer, 
lusters are 
learly following the "stru
turing dire
tion"of the data. We obtain the same behavior for the 
onne
tions of all the layersfavoring the union of those 
lusters that follow the stru
ture of the data.The pseudo-
ode to 
ompute the entropi
 proximity matrix is presented inTable 4.2.The pro
ess just des
ribed is di�erent from the apparently similar pro
essof ranking the 
onne
tions pi a

ording to the value of the probability densityfun
tion derived from the M -neighborhood ve
tor �eld. In Fig. 4.7 we show the
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Figure 4.6: The �rst layer 
onne
tions following the stru
ture of the data setwhen using an entropi
 proximity matrix.Table 4.2: Pseudo-
ode for 
omputing the entropi
 proximity matrix.For i = 1 to N (number of obje
ts)For j = 1 to M (number of nearest neighbors)Compute H(D, pj) = H({D} ∪ {pj}).end jend iBuild the (N × M) entropi
 proximity matrix.estimated probability density fun
tion and the points 
orresponding to the pi
onne
tions. We 
an see that, even in this simple example, a di�eren
e exists inthe ranking of the 
onne
tions (�fth element).4.2.2 The Clustering Pro
essWe 
ould use the new entropi
 proximity matrix with an existing 
lusteringalgorithm to 
luster the data. However, the potentialities of the new proximitymatrix 
an be exploited with a new hierar
hi
al agglomerative algorithm that wepropose and 
all LEGClust (Layered Entropi
 subGraph Clustering algorithm).The basi
 stru
ture used in this new 
lustering algorithm is the unweightedsubgraph. More spe
i�
ally, we use dire
ted, maximally 
onne
ted, unweighted
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11 (0.065)

12 (0.052)

8 (0.052)

9 (0.065)

5 (0.035)

1 (0.035)

2 (0.047)

4 (0.047)
3 (0.043)

Figure 4.7: The probability density fun
tion of the M -neighborhood ve
tor�eld and the points 
orresponding to the pi 
onne
tions. The labels indi
atethe element number and the pdf value.subgraphs, built with the information provided by the entropi
 proximity matrix(EPM). Ea
h subgraph is built by 
onne
ting ea
h point with the 
orrespondingpoint of ea
h layer (
olumn) of the EPM. An example of su
h a subgraph wasalready shown in Fig. 4.6. The 
lusters are built hierar
hi
ally by joining togetherthe 
lusters that 
orrespond to the layer subgraphs.We start by presenting, in Table 4.3, the pseudo-
ode of LEGClust Algo-rithm. Table 4.3: Pseudo-
ode for the LEGClust Algorithm.Compute the entropi
 proximity matrix. (Table 4.2)Form the elementary 
lusters using the �rst layer.De�ne k - the minimum number of 
onne
tions.While number-of-
lusters> 1 doGo to next layer (L).Join ea
h 
luster with the one having the highest number of 
onne
tionswith it (≥ k) in L.End WhileTo illustrate the pro
edure applied in the 
lustering pro
ess we use a simple



4.2. THE CLUSTERING ALGORITHM COMPONENTS 109two dimensional data set example (Fig. 4.8a). This data set 
onsists of 16 pointsapparently 
onstituting 2 
lusters with 10 and 6 points ea
h. Sin
e the numberof 
lusters in a data set is highly subje
tive, the assumption that it has a spe
i�
number of 
lusters is always a�e
ted by the knowledge about the problem.In Tables 4.4 and 4.5 we present the EPM built from the entropi
 dissimilaritymatrix. Table 4.4: The dissimilarity matrix for Fig. 4.8 data set.Points 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 - 5.64 - 6.36 5.66 6.32 - - - 5.77 - - - - - -2 6.00 - 6.03 6.26 6.40 - - - - 6.12 - - - - - -3 - 6.19 - 6.61 - - - - - 7.03 6.76 6.48 - - - -4 6.48 6.50 6.58 - - - - - - 6.36 6.47 - - - - -5 6.10 - - - - 6.24 - 6.16 6.09 6.18 - - - - - -6 - - - 6.05 6.21 - - 6.03 6.14 6.11 - - - - - -7 - - - - 5.61 6.06 - 5.67 5.28 6.84 - - - - - -8 - - - - 6.09 5.54 5.82 - 5.89 6.27 - - - - - -9 - - - - 5.78 5.98 5.79 6.03 - 5.99 - - - - - -10 6.06 5.98 - 6.05 6.00 5.98 - - - - - - - - - -11 - - - - - - - - - - - 3.74 4.41 4.73 3.93 3.8612 - - - - - - - - - - 3.86 - 3.88 4.36 4.60 3.9513 - - - - - - - - - - 4.39 3.78 - 3.79 4.75 3.8714 - - - - - - - - - - 4.71 4.36 3.80 - 3.93 3.8615 - - - - - - - - - - 3.85 4.81 5.01 3.82 - 3.7116 - - - - - - - - - - 4.19 4.18 4.18 4.18 4.18 -The EPM de�nes the 
onne
tions between ea
h point and those points inea
h layer: point 1 is 
onne
ted with point 2 in the �rst layer, with point 5 inthe se
ond layer and with point 10 in the third layer and so on (see Table 4.5).We start the pro
ess by de�ning the elementary 
lusters. These 
lusters are



110 CHAPTER 4. CLUSTERING WITH ENTROPYTable 4.5: The proximity matrix for Fig. 4.8 data set.LayersPoints L1 L2 L3 L4 L51 2 5 10 6 42 1 3 10 4 53 2 4 11 1 104 10 3 6 2 115 9 1 8 10 66 8 4 10 9 57 9 5 8 6 108 6 7 9 5 109 5 7 10 6 810 6 2 5 4 111 12 16 15 13 1412 11 13 16 14 1513 12 14 16 11 1514 13 16 15 12 1115 16 14 11 12 1316 14 11 13 12 15built by 
onne
ting, with an oriented edge, ea
h point with the 
orrespondingpoint of the �rst layer (Fig. 4.8b). There are 4 elementary 
lusters in our simpleexample.In the se
ond step of the algorithm we 
onne
t, with an oriented edge, ea
hpoint with the 
orresponding point of the se
ond layer (Fig. 4.8
).In order to build the se
ond step 
lusters we apply a rule based on the numberof 
onne
tions to join ea
h pair of 
lusters. We 
an use the simple rules of: a)joining ea
h 
luster with the ones having at least k 
onne
tions with it; b) joiningea
h 
luster with the one having the highest number of 
onne
tions with it, not
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Cluster 4(
) The 4 elementary 
lusters and these
ond layer 
onne
tions.Figure 4.8: The 
lustering pro
ess in a simple two dimensional data set.less than a prede�ned k. In the performed experiments this se
ond rule provedto be more reliable, and the resulting 
lusters were usually "better" than usingthe �rst rule. The parameter k must be greater than 1 in order to avoid outliersand noise in the 
lusters. In our simple example we 
hose to join the 
lusterswith the maximum number of 
onne
tions larger than 2 (k > 2). In the se
ondstep we form 3 
lusters by joining 
luster 1 and 3 with 3 edges 
onne
ting them(note that the edge 
onne
ting points 3 and 4 is a double 
onne
tion). Thepro
ess is repeated and the algorithm stops when only one 
luster is present orwhen we get the same number of 
lusters in 
onse
utive steps. The resultingnumber of 
lusters for this simple example was 4-3-2-2-2. As we 
an see, thenumber of 
lusters in steps 3 and 4 is the same (2); therefore, we 
onsider it tobe the a

eptable number of 
lusters.
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lustering pro
ess4.2.3.1 Number of nearest neighborsThe �rst parameter that one must 
hoose in LEGClust is the number of nearestneighbors (M). We do not have a spe
i�
 rule for this. However, one should not
hoose a very small value be
ause a minimum number of steps in the algorithmis needed in order to guarantee rea
hing a solution. Choosing a relatively highvalue for M is also not a good alternative be
ause one loses information aboutthe lo
al stru
ture, whi
h is the main fo
us of the algorithm.Based on the large amount of experiments performed with the LEGClustalgorithm on several data sets, we 
ame to a rule of thumb of using M values nothigher than 10% of the data set size. Note that, sin
e the entropy 
omputationfor the whole data set has 
omplexity O

(

N
(

(M
2

)

+ 1
)2
), the value of M has alarge in�uen
e on the 
omputational time. Hen
e, for large data sets a smaller

M is re
ommended, down to 2% of the data size. For image segmentation M 
anbe redu
ed to less than 1% due to the nature of image 
hara
teristi
s (elementsare mu
h 
loser to ea
h other than in other 
lassi�
ation problems).4.2.3.2 The smoothing parameterAs we said earlier, the h parameter is very important when 
omputing the en-tropy. In other works that also use the Rényi's quadrati
 entropy to perform
lustering it is assumed that the smoothing parameter is experimentally sele
tedand that it must be �ne tuned to a
hieve a

eptable results [63,97℄. A 
omparisonbetween formulas 2.60 and 2.61 was also performed in [96℄. In this work theyuse formula 2.60 to estimate the optimal one-dimensional kernel size for ea
hdimension of the data, and use the smallest value as the smoothing parameter.In Se
tion 3.3.2.1 we have proposed the formula hop = 25
√

m/N and haveshown experimentally that higher values of h than those given by formula 2.61produ
e better results in neural network 
lassi�
ation using error entropy mini-



4.2. THE CLUSTERING ALGORITHM COMPONENTS 113mization as a 
ost fun
tion. Following the same approa
h, we propose a formulasimilar to formula 2.61, but with the introdu
tion of the mean standard devia-tion:
hop = 2 s∗

(

4

(m + 2)N

)
1

m+4

, (4.3)where s∗ is the mean value of the sample standard deviations for ea
h dimension.All experiments of LEGClust were performed using formula 4.3.Although the value of the smoothing parameter is important, it is not 
ru
ialin order to obtain good results. As we in
rease the h value, the kernel be
omessmoother and the entropi
 proximity matrix be
omes similar to the Eu
lidiandistan
e proximity matrix. Extremely small values of h will produ
e undesirablebehaviors be
ause the entropy will have high variability. Using h values in asmall interval, near the optimal value, does not a�e
t the �nal 
lustering results(e.g., we used in the spiral data set � Fig. 4.2 � values between 0.05 and 0.5without 
hanging the �nal result).4.2.3.3 Minimum number of 
onne
tionsThe third parameter that must be 
hosen in the LEGClust algorithm, is the valueof k, the minimum number of 
onne
tions to join 
lusters in 
onse
utive steps ofthe algorithm. As mentioned earlier, one should not use k = 1 to avoid outliersand noise, espe
ially if they are lo
ated between 
lusters. In our experiments weobtained good results using either k = 2 or k = 3. If the elementary 
lustershave a small number of points, we do not re
ommend higher values for k be
auseit 
an 
ause the impossibility of joining 
lusters due to la
k of a su�
ient numberof 
onne
tions among them.4.2.4 Algorithm OptimizationIn order to optimize the LEGClust algorithm, we have introdu
ed some extrare�nements that 
an produ
e better �nal 
lustering solutions. One of them,



114 CHAPTER 4. CLUSTERING WITH ENTROPYrelated with the problem of outliers or noise, is the presen
e of "mi
ro 
lusters".Mi
ro 
lusters are 
lusters with a very small number of elements: in a small dataset these 
ould 
onsist of 2 or 3 elements. These mi
ro 
lusters 
an appear if,for example, there is a very small number of elements in a isolated region (Fig.4.9a).What should we do with these mi
ro 
lusters? There are several solutions:
• At ea
h step of the algorithm we 
an join ea
h mi
ro 
luster to the 
lusterhaving the highest number of 
onne
tions with it. This must be done with
aution be
ause it 
an, eventually, lead to the union of two normal 
lus-ters into one single 
luster. However, in most 
ases, this approa
h produ
esgood results. An example of it is shown in Fig. 4.9, where we 
an see thedi�eren
e between a 
lustering with no mi
ro 
lusters 
onsideration and onewhere the 
lusters with less than 3 elements, before the se
ond step of thealgorithm, are joined with other 
lusters. The number of 
lusters in ea
hstep of the 
lustering pro
ess was, in the �rst 
ase (Fig. 4.9a): 18, 16, 12,6, 5, 5 and in the se
ond 
ase (Fig. 4.9b): 18, 13, 8, 3, 3.
• We 
an repeat the previous pro
ess periodi
ally along the 
lustering pro
ess,in
reasing the size of the a

eptable mi
ro 
lusters. This means that one
an start by for
ing the 
lustering of mi
ro 
lusters with, for instan
e, lessthan 3 elements at a �rst stage and then repeat the pro
ess in posteriorstages in
reasing, at ea
h step, the minimum number of elements in ea
hmi
ro 
luster. The only problem involved with this approa
h is the fa
t thatone may wrongly ex
lude real small 
lusters from the �nal 
lustering.
• The 
lustering pro
ess is performed normally and, in the end, we 
an takea
tions in order to in
lude the mi
ro 
lusters in the formed 
lusters. Thisoption, however, has the disadvantage of the possible in
lusion of outliersand noise in real 
lusters.
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5 clusters

k=3; No micro cluster detection.

Micro Clusters(a) Clustering with out mi
ro 
luster dete
tion.
3 clusters

k=3; With micro cluster detection.

(b) Clustering with mi
ro 
luster dete
tion.Figure 4.9: Di�erent solutions 
onsidering or not mi
ro 
luster dete
tion.
• We just leave the �nal mi
ro 
lusters as they are and 
onsider them as noiseor outliers.Other aspe
ts that 
an be 
onsidered for in
lusion in the algorithm in orderto try to a
hieve better results are:
• Regarding the possibility of joining two 
lusters, we have presented in se
-tion 4.2.2 two possible solutions based on a �xed number k of 
onne
tionsbetween elements of two di�erent 
lusters. One of the options that 
an bein
luded in the algorithm is to in
rease the number k as we evolve in the
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lustering pro
ess. This option is based on the fa
t that, as we evolve in the
lustering pro
ess, larger 
lusters will be formed and, therefore, the prob-ability of having a higher number of 
onne
tions between 
lusters will bemu
h higher.
• At ea
h step of the algorithm we only use the 
onne
tions of the 
orrespond-ing layer to evaluate the possibility of joining two 
lusters. It may happenthat at a 
ertain step, the number of 
onne
tions between two 
lusters maynot be su�
ient to perform their union but, at a further step, when 
onsid-ering the 
onne
tions of all the previous steps, we may rea
h the number kof ne
essary 
onne
tions to joint the two 
lusters. One 
ould then use as anoptional feature the evaluation of the 
lustering pro
ess at ea
h step basedon all previous 
onne
tions.We have made some experiments with these two options but we didn't rea
ha 
on
lusion about the type of data sets that bene�t from their use.Despite the fa
t that we do not use any kind of intra-
luster or inter-
lusterasso
iation measure, we 
an easily introdu
e this 
on
ept in our algorithm butthis would highly in
rease its 
omplexity, turning against our obje
tive of aextremely simple 
lustering algorithm. We also suspe
t that the introdu
tionof our new entropi
 dissimilarity measure in other hierar
hi
al and graph-basedalgorithms may improve their results.4.3 ExperimentsWe have experimented the LEGClust algorithm in a large variety of appli
a-tions. We have performed experiments with the real data sets, UBIRIS, NCIMi
roarray, 20NewsGroups, Dut
h Handwritten Numerals (DHN), Iris, Wdb
,Wine, and Olive, some of them with a large number of features, and also withseveral arti�
ial two-dimensional data sets. The arti�
ial data sets were 
reated



4.3. EXPERIMENTS 117in order to better visualize and 
ontrol the 
lustering pro
ess and some examplesare depi
ted in Fig. 4.10. For the arti�
ial data set problems the 
lustering so-lutions yielded by di�erent algorithms were 
ompared with the majority 
hoi
esolutions obtained in the human 
lustering experiment mentioned in Se
tion 4.2and des
ribed in Appendix B. For real data sets the 
omparison was made withthe supervised 
lassi�
ation of these data sets with the ex
eption of the UBIRISdata set where the obje
tive of the 
lustering tasks was the 
orre
t segmentationof the eye iris. In both 
ases � majority 
hoi
e or supervised 
lasses � we willdesignate these solutions as referen
e solutions or referen
e 
lusters.
(a) dataset7 (142). (b) dataset13 (113). (
) dataset15 (184).
(d) dataset22 (141). (e) dataset34 (217). (f) spiral (387).Figure 4.10: Some of the arti�
ial data sets used in the experiments (in bra
k-ets the number of elements).We have 
ompared our algorithm with several well known 
lustering algo-rithms: Chameleon algorithm, two Spe
tral 
lustering algorithms, DBS
an andMean Shift algorithms.The Chameleon 
lustering algorithm, in
luded in Cluto [107℄, is a softwarepa
kage for 
lustering low and high-dimensional data sets. The parameters usedin the experiments, among the innumerous used by Chameleon are mentioned
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t, the number of parameters needed to tune this algorithmwas one of the main problems we en
ountered when we tried to use it in ourexperiments. To perform the experiments with Chameleon we followed the advi
ein [108℄ and in the manual for the Cluto software [106℄.For the experiments with the spe
tral 
lustering approa
hes we implementedthe algorithms (Spe
tral-Ng) and (Spe
tral-Shi) presented in [141℄ and [175℄ re-spe
tively. One of the di�
ulties with both Spe
tral-(Ng/Shi) algorithms, isthe 
hoi
e of the s
aling parameter. Extremely small 
hanges in the s
alingparameter produ
ed very di�erent 
lustering solutions. In these algorithm thenumber of 
lusters is the number of eigenve
tors used to perform 
lustering. Thenumber of 
lusters is a parameter that is 
hosen by the user in both algorithms.We tried to make this 
hoi
e, in Spe
tral-Ng, an automati
 pro
edure by imple-menting the algorithm presented in [162℄; this, however, produ
ed poor results.When making the 
hoi
e of the 
luster 
entroids in the k-means 
lustering usedin Spe
tral-Ng we performed a random initialization and 10 restarts (deemeda

eptable by the authors).We tested the adaptive Mean Shift algorithm [33℄ in our arti�
ial data setsand the results were very poor. In most of the 
ases the proposed 
lustering so-lution has a high number of modes and, 
onsequently, a high number of 
lusters.For problems having a small number of points, the estimated density fun
tionwill present, depending on the window size, either a unique mode if we use alarge window size, or several modes not 
orresponding to really existing 
lusters,if we use a small window size. An example of a 
lustering solution given bythis algorithm is presented in Fig. 4.11. As we 
an see, the number of modesis extremely high and, even if we optimize the result by joining modes that arevery 
lose to ea
h other, we still have a 
onsiderable number of modes. We thinkthat this algorithm probably works better with large data sets. An advantageof this algorithm is the fa
t that one does not have to spe
ify the number of
lusters as these will be driven by the data a

ording to the number of modes.
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(a) (b)Figure 4.11: An example of the number of modes (square points) obtainedwith the adaptive Mean Shift algorithm (
onsidering 30 nearest neighbors)when applied to the spiral data set (a) and an estimated probability densityfun
tions of the same data set (b).The DBS
an algorithm is a density based algorithm that 
laims to �nd 
lus-ters of arbitrary shapes, but presents, basi
ally, the same problems as the MeanShift algorithm. It is based in several density de�nitions between a point and itsneighbors. This algorithm only requires two input parameters, Eps and MinPts,but small 
hanges in their values, spe
ially in Eps, produ
e very di�erent 
lus-tering solutions. For our experiments we used the implementation of DBS
anavailable in [200℄.In the LEGClust algorithm the parameters involved are: the smoothing pa-rameter (h), related to the Parzen pdf estimation; the number of neighbors to
onsider (M); and the number of 
onne
tions to join 
lusters (k). For the pa-rameter h we used in all experiments the proposed formula 4.3. For the othertwo parameters we indi
ate in ea
h experiment the 
hosen values.Regarding the experiments with arti�
ial data sets, depi
ted in Fig. 4.10, wepresent in Figures 4.12 and 4.12 the results obtained with LEGClust.In Fig. 4.14 we present the solutions obtained with Chameleon algorithmthat di�er from those suggested by LEGClust.From the performed experiments, an important aspe
t noti
ed when usingthe Chameleon algorithm was the di�erent solutions obtained for slightly di�er-
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(a) dataset7; M=14; k=3;43 33 17 10 5 3 3 3 2 2 1. (b) dataset13; M=10; k=3;11 7 5 4 3 3 3.

(
) dataset13; M=10; k=3;11 7 5 4 3 3 3. (d) dataset15; M=18; k=2;55 37 16 7 5 3 2 1.Figure 4.12: The 
lustering solutions suggested by LEGClust (part 1). Ea
hlabel shows: the data set name; the number of neighbors (M); the number of
onne
tions to join 
lusters (k); the number of 
lusters found at ea
h step ofthe algorithm (underlined is the sele
ted step).ent parameter values. Data set 4.14
 was the one where we had more di�
ultiesin tuning the parameters involved in Chameleon algorithm. A parti
ular di�er-en
e between the Chameleon and LEGClust results 
orresponds to the 
urioussolution given by Chameleon, and depi
ted in Fig. 4.14b. When 
hoosing 3
lusters as input parameter (n
=3) this solution is the only solution that is notsuggested by the individuals that performed the tests referred in Se
tion 4.2.The solutions for this same problem, given by LEGClust, are shown in �gures4.12b and 4.12
.The spe
tral 
lustering algorithms gave some good results for some data sets,
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(a) dataset20; M=15; k=3;41 28 18 10 4 2 2 1. (b) dataset22; M=14; k=2;45 26 12 8 5 3 2 2.

(
) dataset34; M=20; k=3;68 59 36 25 15 8 5 3 2 2. (d) spiral; M=30; k=2;116 72 28 14 5 3 2 1.Figure 4.13: The 
lustering solutions suggested by LEGClust (part 2). Ea
hlabel shows: the data set name; the number of neighbors (M); the number of
onne
tions to join 
lusters (k); the number of 
lusters found at ea
h step ofthe algorithm (underlined is the sele
ted step).but they were unable to resolve some non-
onvex data sets like the double spiralproblem (Figures 4.15 and 4.16).The DBS
an algorithm 
learly fails in �nding the referen
e 
lusters in alldata sets (ex
ept the one of Fig. 4.10a).Comparing the results given by all the algorithms applied to the arti�
ialdata sets we 
learly see, as expe
ted, that the solutions obtained with the densitybased algorithms are worse than those obtained with any of the other algorithms.The best results were a
hieved with the LEGClust and Chameleon algorithms.
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(a) dataset13; n
=4; a=20; n=20. (b) dataset13; n
=3; a=20; n=20.

(
) dataset34; n
=2; a=50; n=6.Figure 4.14: Some 
lustering solutions suggested by Chameleon. The 
onsid-ered values nc, a and n are shown in ea
h label.
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(a) dataset13; n
=4; σ = 0.065. (b) dataset22; n
=3; σ = 0.071.

(
) spiral; n
=2; σ = 0.0272. (d) spiral; n
=2; σ = 0.0275.Figure 4.15: Some 
lustering solutions suggested by Spe
tral-Ng. Ea
h labelshows: the data set name; the pre-established number of 
lusters; the σ value.



124 CHAPTER 4. CLUSTERING WITH ENTROPY

(a) dataset13; n
=4; σ = 0.3. (b) dataset15; n
=5; σ = 0.3.

(
) dataset22; n
=3; σ = 0.15. (d) spiral; n
=2; σ = 0.13.Figure 4.16: Some 
lustering solutions suggested by Spe
tral-Shi. Ea
h labelshows: the data set name; the pre-established number of 
lusters; the σ value.



4.3. EXPERIMENTS 125We now present the performed experiments with LEGClust in real data setsand the 
omparative results obtained with the di�erent 
lustering algorithms.We start by presenting the results of the segmentation performed by LEG-Clust and Spe
tral-Ng in the images of UBIRIS data set sample. The resultsfor this image segmentation problem are depi
ted in Fig. 4.17 (se
ond and third
olumns). In all experiments with LEGClust we used the values M = 30 and
k = 3. For the experiments with Spe
tral-Ng we 
hose 5 as the number of �nal
lusters. We 
an see by the segmentations produ
ed that both algorithms gavea

eptable results. However, one of the striking di�eren
es is the way Spe
tral
lustering splits ea
h eyelid in two by its 
enter region (the third image is a goodexample of this behavior) that is also observable if we 
hoose di�erent numbersof 
lusters.To test the sensitivity of our 
lustering algorithm to di�erent values of theparameters we have made some experiments with di�erent values of M and k,in the UBIRIS data set sample. An example is shown in Fig. 4.18. We 
an seethat, di�erent values of M and k do not a�e
t substantially the �nal result ofthe segmentation pro
ess; the eye iris in all solutions is distin
tly obtained.Experiments with the DHN data set were performed with LEGClust andSpe
tral 
lustering and their results 
ompared. These results are presented inTable 4.7. ARI stands for Adjusted Rand Index, a measure for 
omparing resultsof di�erent 
lustering solutions when the labels are known [86℄. This index is animprovement of the Rand Index; it lies between 0 and 1 and the higher the ARIindex is the better is the 
lustering solution. The parameters for both Spe
tral
lustering and LEGClust were tuned to give the best possible solutions. We 
ansee that, in this problem, LEGClust performs mu
h better than Spe
tral-Shiand with similar (but slightly better) results than Spe
tral-Ng. We also show inTable 4.7 some di�erent results for LEGClust obtained with di�erent 
hoi
es ofthe minimum number of 
onne
tions (k) to join 
lusters. In these results we 
ansee that di�erent values of k produ
e results with small di�eren
es in the ARI
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Figure 4.17: Sample from UBIRIS data set (�rst 
olumn) and the results of theLEGClust (se
ond 
olumn) and Spe
tral (third 
olumn) 
lustering algorithms.The number of 
lusters for LEGClust was 8, 9, 12, 7, 5 and 8 respe
tively, with
M = 30 and k = 3.



4.3. EXPERIMENTS 127
(a) k = 2 (b) M = 10 (
) M = 20Figure 4.18: Segmentation results for the fourth image (line 4) of Fig. 4.17using di�erent values of k or M .index.In Table 4.6 we show an example of the 
onfusion matrix obtained withLEGClust for an experiment with the DHN data set.In the experiments with the 20NewsGroups data set we have 
ompared theLEGClust algorithm with both Spe
tral 
lustering algorithms. The results ofthe experiments are shown in Table 4.7. We 
an see that the best results areobtained with the Spe
tral-Ng algorithm. However the results of LEGClust aremu
h better when 
ompared with Spe
tral-Shi.In the experiments performed with the NCI Mi
roarray data set we also haveTable 4.6: A 
onfusion matrix of a 
lustering solution given by LEGClust forthe DHN data set. Classes
Clusters
176 1 0 1 0 3 9 0 169 31 0 0 0 0 0 0 0 19 07 2 1 3 14 178 6 16 1 1880 2 195 5 0 0 0 83 3 31 10 4 7 1 4 0 101 0 30 167 0 1 3 0 1 0 2 20 2 0 0 86 0 1 0 1 00 8 0 3 95 0 1 0 2 10 8 0 180 0 14 1 0 0 015 0 0 0 1 1 181 0 3 0
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ompared the LEGClust and Spe
tral 
lustering algorithms. To perform theseexperiments we have 
hosen 3 
lusters, following the example in [78℄, as the �nalnumber of 
lusters for both algorithms. The results are also shown in Table 4.7.Again the results produ
ed by LEGClust were quite insensitive to the 
hoi
e ofparameter values.Table 4.7: The results and parameters used in the 
omparison of LEGClustand Spe
tral 
lustering in experiments with DHN, 20NewsGroups and NCIMi
roarray data sets. LEGClustt Spe
tral-Ng Spe
tral-ShiDHN M k ARI n
 σ ARI n
 σ ARI30 10 0.628 10 12 0.573 10 10 0.28730 8 0.60830 12 0.57420NewsGroups 20 3 0.289 20 12 0.479 20 20 0.00620 2 0.287NCI Mi
roarray 4 2 0.148 3 80 0.177 3 10 0.1386 3 0.14810 3 0.148The results presented in Table 4.7 show that the LEGClust algorithm per-forms better than the Spe
tral-Shi algorithm in the three data sets and, 
om-pared with Spe
tral-Ng, it gives better results in the DHN data set and similarones in the NCI Mi
roarray.In the experiments with the data sets Iris, Olive, Wdb
 and Wine, we 
om-pared the 
lustering solutions given by LEGClust and Chameleon. The param-eters used for ea
h experiment and the results obtained with both algorithmsare shown in Table 4.8. Ea
h experiment with the Chameleon algorithm, followed
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ommand: v
luster dataset_name number_of_
lusters=n
 -
lmethod=graph-sim=dist -agglofrom=a -agglo
r=wslink -nnbrs=n given in [106℄. The �nalnumber of 
lusters is the same as the number of 
lasses. We 
an see that the re-sults with LEGClust are better than the ones obtained with Chameleon, ex
eptfor the data set Olive.Table 4.8: The results and parameters used in the 
omparison of LEGClustand Chameleon in experiments with 4 real data sets.Chameleon LEGClustData set a n ARI M k ARIIris 9 50 0.658 15 3 0.750Olive 40 40 0.733 25 3 0.616Wdb
 40 25 0.410 20 3 0.574Wine 30 21 0.400 15 3 0.802Finally we also experimented our algorithm in two images from [54℄, usedto test textured image segmentation. We show in Fig. 4.19 the results obtainedand the 
omparison with those obtained by Fis
her [54℄ with their Path-basedalgorithm. We are aware that our algorithm was not designed having in mind thespe
i�
 requirements of texture segmentation; as expe
ted, the results were notas good as those obtained in [54℄, but nevertheless LEGClust was still 
apableof dete
ting some of the stru
tured texture information.In this 
hapter we have presented a new proximity matrix, built with anew entropi
 dissimilarity measure, as input for 
lustering algorithms. We alsopresented a simple 
lustering pro
ess that uses this new proximity matrix andperforms 
lustering by 
ombining a hierar
hi
al approa
h with a graph te
hnique.The new proximity matrix and the methodology implemented in the LEG-Clust algorithm allows taking into a

ount the lo
al stru
ture of the data, rep-resented by the statisti
al distribution of the 
onne
tions in a neighborhood of areferen
e point a
hieving a good balan
e between stru
turing dire
tion and lo
al
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Figure 4.19: Segmentation results for textured images (left hand side) withFis
her's path-based 
lustering (midle) and LEGClust (right). The parametersused in LEGCLust were M = 30 and k = 3 and the �nal number of 
lusterswas 3 (top) and 6 (bottom).
onne
tedness. In this way, LEGClust is able, for instan
e, to 
orre
tly follow astru
turing dire
tion presented on the data, with sa
ri�
e of lo
al 
onne
tedness(minimum distan
e), as human 
lustering often does.In the next 
hapter we will use LEGClust to perform modular neural networktask de
omposition.



Chapter 5
MNN with Entropi
 TaskDe
omposition
As we said in the beginning of the previous 
hapter, the proposed new 
lusteringalgorithm was developed be
ause we intended to perform modular neural net-work task de
omposition based on entropi
 
riteria. The purpose of this 
hapteris to present the experiments with modular neural networks with task de
om-position performed with LEGClust (a small part of this 
hapter was presentedin [165℄). We will start the 
hapter with a brief introdu
tion to modular neuralnetworks and the task de
omposition pro
ess followed by the presentation of theresults obtained in 
lassi�
ation problems.The use of simple neural networks su
h as multi-layer per
eptrons has somedrawba
ks: e.g. slow learning, weight 
oupling or the bla
k box e�e
t. These
an be alleviated by using a modular neural network (MNN). A modular neuralnetwork is an ensemble of learning ma
hines. The idea behind this kind oflearning stru
ture is the divide-and-
onquer paradigm: the problem should bedivided into smaller subproblems that are solved by experts (modules) and their131
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e a �nal solution. (Figure 5.1).
Data

Modules

Integration
Output

Figure 5.1: A modular neural network.Ensembles of learning ma
hines proved to give, in some 
ases, better resultsthan the single learners that produ
e them. The proofs are mainly empiri
al[15, 38℄ but there are some theoreti
al results [5, 6, 111℄ that also support thisassumption.The purpose here is to address the issue of using our entropi
 
lusteringalgorithm (LEGClust) to perform the task de
omposition in a modular neuralnetwork (MNN) approa
h, as opposite to the traditional methods. Task de-
omposition is one of the strategies used to simplify the learning pro
ess of anylearning system. In neural networks it basi
ally 
onsists on the partition of theinput spa
e in several regions, this way de
omposing the initial problem in dif-ferent subproblems. This is done based on the assumption that these regionspossess di�erent 
hara
teristi
s and so they should be learned by spe
ializedneural networks. By posterior integration of the learning results, we are ableto hopefully a
hieve better solutions for the initial problem. Generally, taskde
omposition 
an be obtained in three di�erent ways: expli
it de
omposition(the task is de
omposed by the designer before training), 
lass de
omposition(the de
omposition is made based on the 
lasses of the problem) and automati
de
omposition. When automati
 de
omposition is used, it 
an either be made
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an be made before training the modules, usingan unsupervised or 
lustering algorithm. We use this last approa
h performingthe task de
omposition with LEGClust.So, to use a MNN, three stages have to be 
onsidered:
• The task de
omposition stage, where the problem is divided into smallerproblems, ea
h one to be delivered to one of the modules or expert networks.
• The training phase, where ea
h individual expert (module) is trained untilit learns to solve its parti
ular subproblem.
• The de
ision integration. This strategy is used to 
ombine the work ofthe experts and to produ
e a �nal network output. This 
an be done inseveral ways: using a gating network [90℄, making the modules vote [11℄ orthrough hierar
hi
al integration (whi
h 
an also use voting and/or gatingnetworks) [91, 100℄. In this work we 
onsider the use of a gating network.This network 
an be 
onsidered as an additional expert that is trained tore
ognize the region of the input spa
e where ea
h of the experts have theirregion of expertise, de�ned in the task de
omposition phase.After �nishing the learning pro
ess, when a new pattern to be 
lassi�edis presented to the network, the individual experts 
ompute the 
lass it mightbelong, but the gate network sele
ts only a parti
ular output that is given by theexpert it 
onsiders to be `
ompetent' to solve the problem, taking into a

ountthe region of the input spa
e to whi
h the pattern belongs.5.1 Task de
omposition and MNN Stru
tureAs we mentioned before, the task de
omposition is done before training themodules, using a 
lustering algorithm. Previous works like [4,44,189℄ and [5,50℄already used this approa
h. There are several well known algorithms to perform
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lustering, being the most 
ommon ones those based on matrix theory and graphtheory. However, it is also known, and we have mentioned it on the previous
hapter, that this kind of algorithms often have serious di�
ulties in identifyingreal 
lusters. The algorithms based on matrix theory build 
lusters a

ording tosome distan
e measure produ
ing usually globular 
lusters and the algorithmsbased on graph theory, usually divisive algorithms, present some di�
ulties inthe pro
ess of graph partitioning to obtain plausible 
lusters. In the followingwe propose the use of LEGClust to do the automati
 task de
omposition.To better understand the need for a task de
omposition pro
ess, let us takea look at the arti�
ial data set depi
ted in Fig.5.2.

Figure 5.2: The partition of the input spa
e for a 3 
lass problem.This is a 3 
lass problem where the input spa
e is 
learly divided into 2 re-gions: one of the regions (upper right) 
ontains samples from 2 
lasses (
rossesand 
ir
les) and the other 
ontains samples from all 3 
lasses. Note that there aretwo 
lasses with samples belonging to the 2 di�erent regions. This 
lassi�
ationproblem, apparently trivial, will require a 
omplex MLP to obtain a satisfa
-tory solution due to the fa
t that there are non 
onvex and disjoint 
lasses. Byhaving a 
lassi�er dedi
ated to ea
h region we are able to transform this parti
-ular problem into two simpler ones with ea
h 
lassi�er responsible to learn its



5.1. TASK DECOMPOSITION AND MNN STRUCTURE 135subproblem de�ned by its region of interest.A s
hemati
 view of the stru
ture of our modular neural network and all thesteps involved in the training phase of the MNN is depi
ted in Fig. 5.3.
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Figure 5.3: S
hemati
 view of the stru
ture and the training phase of theModular Neural Network.Ea
h module, in
luding the gate, is an MLP.The pro
ess starts with the partition of the input spa
e in C 
lusters. Thispartition is performed by the LEGCLust algorithm that re
eives as input the
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tor T and produ
es as output the same
X and T and an additional ve
tor C representing the 
lusters labels for theelements of the data set.We have already mentioned, in the previous 
hapter, that the �nal numberof 
lusters in a 
lustering pro
ess is very subje
tive and is also in�uen
ed by theproblem domain. In 
lassi�
ation problems to be solved by a MNN approa
h,one must not work with a high number of �nal 
lusters be
ause the problemwould be extremely partitioned and, 
onsequently, the errors indu
ed by the gatemodule, responsible to learn the division of the input spa
e, would probably bevery high. In fa
t, this, and the absen
e of natural 
lusters in a data set, arethe main obsta
les to use a MNN in a 
lassi�
ation problem. If the data setdoes not possess natural 
lusters, by for
ing the division of the input spa
e in,at least, two 
lusters, the errors indu
ed by the gate would be, probably, higherthan those produ
ed by a single MLP. To better understand this problem let uslook at Fig.5.4.

Figure 5.4: The possible partition of the input spa
e in 2 
lusters for this 2
lass problem would produ
e worse results with a MNN than with a simpleMLP.This is a very simple problem for a simple MLP (the 
lasses are almost linearseparable). By dividing the input spa
e in two 
lusters, like the ones depi
ted in
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lustering pro
ess, the errors produ
ed by the gatemodule would be responsible for a worse solution than the possible one obtainedwith a single MLP.To illustrate the training phase, let us return to the example of Fig.5.2 andlet us suppose that the 
lustering pro
ess divides the data set in two 
lusters,
C1 and C2, depi
ted in Fig. 5.5.

C1

C2

Figure 5.5: The possible 2 
lusters originated by the 
lustering pro
ess appliedto the data set of Fig.5.2.The MNN for this problem will have two modules and the gate. The twomodules are responsible for learning ea
h of the subsets of the data de�ned byea
h 
luster and the gate is responsible for learning the problem as if it was a2-
lass problem like the one depi
ted in Fig. 5.6.Ea
h module, M1 and M2, is trained with the subset of the training data
orresponding to ea
h 
luster, C1 and C2, respe
tively. The targets of thesesubsets are the original 
lass labels. Module M1 is trained with 3 
lasses andmodule M2 with 2 
lasses. So, we have a [2, nh, 3] MLP for module M1 and a
[2, nh, 2] MLP for module M2. The gate is trained with all the training set databut now the initial targets are substituted by the 
lusters labels (Fig. 5.6). Bydoing this, the gate network will learn to identify the data 
orresponding to ea
hinput region (
luster). The training pro
ess for ea
h module/gate is performed
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Figure 5.6: The gate is trained as if the initial problem is transformed in a2-
lass problem like the one depi
ted here.exa
tly the same way as in the MLP training. In addition we also use in ea
hmodule/gate our EEM algorithm as referen
ed in Fig. 5.3.In the test phase, for ea
h new pattern that is presented to the MNN, thegate will determine whi
h module is going to 
lassify this new pattern, dependingon the output label. If the gate 
lassi�es the pattern as belonging to C1, theoutput of module M1 is the one that is 
hosen, and the similar for 
luster C2and module M2. Other strategies 
an be used, su
h as the 
ombination of bothoutputs, to obtain a 
lassi�
ation for ea
h pattern, but we didn't 
onsider thishypothesis in our work.5.2 ExperimentsWe have performed a 
onsiderable number of experiments with several data setsusing modular neural networks with task de
omposition performed by di�er-ent 
lustering algorithms: one using k-means (K-MNN), another using Spe
tralClustering [141℄ and the last one using our entropi
 
lustering (EC-MNN). Allthe neural networks used in the experiments, both the modules and the gatesof the MNN, were MLP's with one hidden-layer. The topologies of the MLPswere [a : nh : c], where a is the number of features, nh is the number of neurons
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lasses treated by ea
h expert andthe number of 
lusters/experts for the gates. The neural networks were trainedwith the ba
k-propagation algorithm and early stopping. The experiments weremade using the 2-fold 
ross validation method. Ea
h module is trained with theinput data de�ned by the 
lustering algorithm (ea
h module learns with the datafrom ea
h 
luster). The gate network is trained with all the data labeled by theLEGClust algorithm.Regarding the 
lustering pro
esses, sin
e none of them produ
e automati
allythe number of 
lusters, these must be de�ned by the user. Taking into a

ountthe data sets used in the experiments, we only 
onsidered the possibilities of
2 and 3 
lusters. Otherwise, the training set for ea
h module 
ould have aninsu�
ient number of samples.We used in our experiments several real data sets: Breast Tissue, CTG,Diabetes, Olive, 2VowelsPB and Sonar, and also the arti�
ial one depi
ted inFig. 5.2 further designated as Arti�
ialF5.2 
ontaining 222 elements, 2 featuresand 3 
lasses.In Table 5.1 we present the parameters of ea
h modular neural network forthe results presented in Table 5.2. For ea
h type of MNN, we show the numberof experts and, for ea
h of them, we present the number of hidden neurons andthe number of output neurons. The number of output neurons is de�ned by thenumber of 
lasses in ea
h 
luster. The presented stru
tures 
orrespond to thebest results in a large number of experiments with di�erent 
ombinations in thenumber of neurons in ea
h module and in the gate.In Table 5.3 we present the errors for the performed experiments with singleneural networks, SNN, (MLP's with one hidden layer). The number of neuronsin the hidden layer is shown in 
olumn nh. The results in Tables 5.2 and 5.3 arethe average and standard deviations for 20 repetitions of ea
h experiment.



140 CHAPTER 5. MNN WITH ENTROPIC TASK DECOMPOSITIONTable 5.1: Stru
ture of the modular neural networks used in the experiments
orresponding to the results in Table 5.2. The last topology 
orresponds tothe gate stru
ture.Data set Algorithm # Modules MNN Stru
tureArti�
ialF5.2 EC-MNN 2 [2:20:3℄[2:12:2℄-[2:14:2℄K-MNN 2 [2:18:3℄[2:18:2℄-[2:18:2℄S-MNN 2 [2:18:3℄[2:18:2℄-[2:16:2℄Breast Tissue EC-MNN 2 [9:12:2℄[9:12:2℄-[9:3:2℄K-MNN 2 [9:10:2℄[9:12:2℄-[9:12:2℄S-MNN 2 [9:4:2℄[9:14:2℄-[9:6:2℄CTG EC-MNN 3 [22:20:6℄[22:18:2℄[22:26:2℄-[22:26:3℄K-MNN 3 [22:22:10℄[22:18:9℄[22:18:9℄-[22:26:3℄S-MNN 3 [22:18:10℄[22:22:10℄[22:22:10℄-[22:22:3℄Diabetes EC-MNN 3 [8:14:2℄[8:18:2℄[8:12:2℄-[8:16:3℄K-MNN 3 [8:10:2℄[8:12:2℄[8:10:2℄-[8:12:3℄S-MNN 2 [8:18:2℄[8:12:2℄-[8:10:3℄Olive EC-MNN 3 [8:10:4℄[8:4:3℄[8:12:2℄-[8:8:3℄K-MNN 3 [8:6:6℄[8:12:4℄[8:12:8℄-[8:12:3℄S-MNN 3 [8:12:4℄[8:12:4℄[8:4:3℄-[8:6:3℄2VowelsPB EC-MNN 2 [2:4:2℄[2:5:2℄-[2:2:2℄K-MNN 2 [2:6:2℄[2:6:2℄-[2:2:2℄S-MNN 2 [2:5:2℄[2:5:2℄-[2:2:2℄Sonar EC-MNN 2 [60:12:2℄[60:12:2℄-[60:12:2℄K-MNN 2 [60:12:2℄[60:12:2℄-[60:14:2℄S-MNN 2 [60:10:2℄[60:16:2℄-[60:16:2℄



5.3. RESULTS DISCUSSION 141Table 5.2: Errors and standard deviations for the performed experiments withMNN's with task de
omposition made by K-means 
lustering (K-MNN), spe
-tral 
lustering (S-MNN) and entropi
 (LEGClust) 
lustering (EC-MNN).Data set K-MNN S-MNN EC-MNNArti�
ialF5.2 16.40 (2.40) 15.32 (3.55) 14.70 (3.22)Breast Tissue 58.95 (7.54) 33.53 (4.47) 32.79 (3.72)CTG 22.90 (0.86) 23.91 (2.91) 20.67 (2.38)Diabetes 24.45 (1.45) 23.96 (1.76) 23.89 (1.64)Olive 49.11 (2.89) 5.20 (1.11) 4.74 (0.89)2VowelsPB 7.23 (1.17) 7.28 (0.95) 7.25 (0.80)Sonar 16.14 (3.43) 23.69 (4.57) 18.57 (3.40)Table 5.3: Errors and standard deviations for the performed experiments withsingle neural networks (SNN).Data set SNN nhArti�
ialF5.2 19.56 (3.95) 20Breast Tissue 32.75 (3.26) 22CTG 15.70 (0.60) 20Diabetes 23.90 (1.69) 15Olive 5.45 (0.62) 152VowelsPB 7.51 (0.37) 6Sonar 21.90 (2.80) 145.3 Results Dis
ussionWe must start by reminding that the MNN approa
h, with its asso
iated taskde
omposition, will only be e�e
tive, giving better results than single neuralnetworks, if the input spa
e possesses some divisive properties, i.e., if di�erentregions of the input spa
e exhibit 
lear data 
lusters as exempli�ed in Fig. 5.2.This is the main reason why we �rst fo
used our experiments on the 
omparison



142 CHAPTER 5. MNN WITH ENTROPIC TASK DECOMPOSITIONbetween three di�erent modular neural network task de
omposition approa
hes,and se
ondly, we have 
ompared the results obtained by these MNN's and theones obtained with SNN's. So, what we have 
ompared in these �rst experimentsis the suitability of the entropi
 
lustering to perform task de
omposition when
ompared with other methods, namely the k-means and spe
tral 
lusterings. Toa
hieve that 
omparison we have two 
hoi
es: to use, for ea
h data set, the sametopology for the di�erent modules of the MNN's for ea
h method or, for ea
hdata set, to try to �nd the best topology for ea
h module of the MNN for ea
hmethod. We think that the se
ond hypothesis is the most reasonable be
auseone should expe
t that di�erent 
lustering pro
esses would produ
e di�erent
lusters/regions by di�erently dividing the input spa
e. Therefore, the modulesmust possess di�erent stru
tures to learn ea
h of the subproblems, depending onthe 
luster 
omplexity.We 
an see that the average errors, in almost every performed experiment,were smaller for the EC-MNN than for the K-MNN and S-MNN. In some 
asesthe di�eren
es in the performan
es are very substantial, spe
ially when 
om-paring EC-MNN and K-MNN, in the Breast Tissue and Olive data sets. The2VowelsPB is a data set with 2 well separated globular 
lusters, one 
ontaining
lass 1 and 2 and the other 
lasses 3 and 4 (see Appendix A); that is the reasonfor the almost equal results for the three di�erent MNN's.We used the Wil
oxon or ranksum non-parametri
 test to 
he
k the statisti
signi�
an
e of the di�eren
es between similar results. The signi�
an
e level usedwas α = 0.05. The null hypothesis (medians are equal) 
an not be reje
ted fordata set Diabetes between EC-MNN and K-MNN and for data sets Breast Tissue,Diabetes, Arti�
ialF5.2, and Olive between EC-MNN and S-MNN. Despite theresults of the statisti
 tests, the means and standard deviations of the performedexperiments are smaller for the EC-MNN.When 
omparing the results of the performed experiments for both MNN andsingle MLP's (Tables 5.2 and 5.3), we 
an see that, for the data set Arti�
ialF5.2



5.3. RESULTS DISCUSSION 143and 2VowelsPB we have a redu
tion in the �nal error when using MNN's of anykind (in the 2VowelsPB data set the di�eren
e is very small, due to the natureof the problem). Comparing only the results of the SNN and the EC-MNN forthe remaining data sets, we 
an see that there are some data sets where the �nalerrors are 
onsiderable better for the EC-MNN. This is the 
ase of data setsOlive and Sonar. On the other hand, the results for data set CTG are betterwhen using a SNN. A possible explanation for this fa
t is that, as we mentionedbefore, the data set must possess some divisive properties to obtain some gainin using MNN's. We know that data set Olive probably possesses some divisive
hara
teristi
s be
ause olive oil samples 
ame from three di�erent regions of Italy(see Fig. A.3). For the remaining data sets, the results for EC-MNN and SNNare very similar.





Chapter 6Con
lusions
Our work in data 
lassi�
ation with entropi
 
riteria is a 
ontribution bothin supervised 
lassi�
ation with multi-layer per
eptrons and in unsupervised
lassi�
ation. In the following we will present a review of the 
ontributionsmade in this thesis.6.1 ContributionsFollowing previous works on the appli
ation of entropi
 
riteria to regression andpredi
tion, we have introdu
ed and applied the error entropy minimization algo-rithm (EEM) for 
lassi�
ation with MLP's. We have applied it in 
lassi�
ationproblems with data sets with di�erent number of elements, features and 
lasses(balan
ed and unbalan
ed). The EEM algorithm proved to give better resultsthan the usual MSE in almost every performed experiment 1.In order to improve the learning pro
ess with EEM we have implementedseveral optimization pro
edures. We �rst tried to use a variable smoothingparameter in the entropy gradient 
omputation with the purpose of a bettergradient estimation. This attempt didn't produ
e good results and we explainedthe reasons for it. For this reason, we used a �xed smoothing parameter and, in1Despite the fa
t that we do not presented here a 
omparison of the EEM algorithm withother well known 
lassi�
ation methods su
h as SVMs or even other 
ost fun
tions for MLPslike the 
ross-entropy, we have made several experiments 
omparing our algorithm with theselast two and the results also show that EEM is a valid alternative.145



146 CHAPTER 6. CONCLUSIONSa following phase, we performed experiments trying to obtain a formula for itbe
ause the known formulas for pdf estimation proved to be inadequate for ouralgorithm. After performing a large variety of experiments, we proposed a newformula for the EEM smoothing parameter. In another phase of our work, withthe purpose of a
hieving a faster 
onvergen
e, we presented several algorithms foradaptive learning rate. With this optimization strategy, we were able to speed-up the learning pro
ess with good �nal results. The last optimization pro
edurewas the bat
h-sequential algorithm. It was implemented in order to gain fromthe advantages of both methods and also to redu
e the 
omplexity of the EEMalgorithm. Sin
e the 
omputational 
omplexity of the entropy and its gradient isproportional to the number of elements of the training set, the algorithm be
amevery time demanding for large data sets. With the bat
h-sequential algorithmwe were able to a
hieve, in some 
ases, a redu
tion on the 
omputational timeof 5:1.In the se
ond part of our resear
h, we have applied the entropy to 
lusteringproblems by developing a new 
lustering algorithm: LEGClust. This 
lusteringalgorithm is based on layered entropi
 subgraphs build based on a proximitymatrix obtained from a new entropi
 dissimilarity matrix. This dissimilaritymatrix is built with an entropi
 measure obtained by 
omputing, for all thedata set elements, the entropy of the di�eren
e ve
tors in a neighborhood ofevery element. With this entropi
 measure we were able to 
apture the lo
alstru
ture of the data allowing us to apply LEGClust to data sets with 
lustersof di�erent "shapes" without knowing them a priori. The experiments with theLEGClust algorithm in both arti�
ial and real data sets have shown that: ita
hieves good results 
ompared with other 
lassi
al and sophisti
ated 
lusteringalgorithms; it is simple to use, sin
e it only needs to adjust 3 parameters andsimple guidelines for these adjustments were presented; its sensitivity to small
hanges of the parameter values is low; it often yields solutions that are majorityvoted by humans; and, it is a valid proposal for data sets with any number of



6.2. FUTURE WORK 147features.We have �nished this work by implementing a modular neural network (MNN)for 
lassi�
ation using the LEGClust algorithm in its task de
omposition phase.The use of a 
lustering algorithm is one of the possible strategies to perform taskde
omposition. The input spa
e of the problem is divided into several regions,with ea
h one being learned by a di�erent module (NN). We have 
omparedour 
lustering algorithm with the k-means and with the spe
tral 
lustering al-gorithms. The performed experiments have shown that the use of LEGClustto perform task de
omposition is a valid approa
h, that there are several datasets that 
an bene�t from it, and that (generally) this approa
h will yield betterresults (smaller 
lassi�
ation error) than those using k-means and spe
tral 
lus-tering algorithms. We have also 
ompared the results obtained with our MNNwith entropi
 task de
omposition with the results obtained with a single neuralnetwork. They have shown that better results with su
h a modular approa
hare only expe
ted when the 
lassi�
ation problem possesses some divisive 
har-a
teristi
s. Otherwise, by dividing the input spa
e in several regions, the errorintrodu
ed by the de
ision integration of the di�erent modules may lead to aworse �nal 
lassi�
ation error.6.2 Future WorkFirst of all, we must say that we think to have a
hieved the proposed obje
tivesfor this work and that we have ful�lled our initial expe
tations. We are awarethat several other related resear
h topi
s are opened to resear
h and deserve afuture study. Among other possible subje
ts we mention the following ones:The use of entropi
 
ost fun
tions in 
lassi�
ation problems with MLPs mustbe the subje
t of a further theoreti
al study. The nature of the errors, being the
ombination of two random variables of di�erent kinds � the output of the NN isa 
ontinuous variable and the de�ned targets are dis
rete variables � make thisissue a very 
omplex one in theoreti
al terms.



148 CHAPTER 6. CONCLUSIONSWe think that a supplemental e�ort should be made in order to try to use avariable smoothing parameter during the training phase.We have made several preliminary experiments 
omparing the results ob-tained by NNs with the EEM algorithm with other well known 
lassi�ers su
h asSVMs or other 
ost fun
tions su
h as 
ross-entropy. The results show that EEMis 
omparable, with slightly better results, to 
ross-entropy and, when 
omparedto SVMs, it gives better results in some data sets and worse results in others.Further experiments should be performed in order to try to establish the kind ofproblems where one may expe
t better results when using the EEM algorithm.This, is in fa
t, a metalearning resear
h task.We will try to in
lude our entropi
 measure in other existing hierar
hi
al andgraph based algorithms in order to 
ompare them with LEGClust algorithm. Bydoing this, we 
an also establish the importan
e of the entropi
 measure in the
lustering pro
ess.The implementation of a 
lustering pro
ess using as input our entropi
 dis-similarity matrix with a di�erent approa
h than the one presented here, inde-pendent of the user 
hoi
e of parameters, and with a �xed number of 
lusters ifso desired, is one of the open resear
h perspe
tives.Further more, the possibility of 
ombining our entropi
 measure with mea-sures of intra- and inter-
luster asso
iation in order to try to obtain an evenbetter �nal result, in more spe
i�
 
lustering problems like image segmentation,is also an open resear
h proje
t.



Appendix A
Data Sets
In this appendix we present information about the real data sets used in thiswork. Table A.1 
ontains a summary of the 
hara
teristi
s of these data sets.In the following se
tions we present detailed information about ea
h one ofthe data sets. Table A.1: The real data sets used in this work.Data set # samples # features # 
lasses20NewsGroups 1000 565 202VowelsPB 608 2 4Breast Tissue 106 9 6CTG 2126 22 10DHN 2000 3 10Diabetes 768 8 2Ionosphere 351 33 2Iris 150 4 3NCI Mi
roarray 64 6830 12Olive 572 8 9Sonar 208 60 2UBIRIS image data setWdb
 569 30 2Wine 178 13 3

149



150 APPENDIX A. DATA SETS20NewsGroupsThe 20 Newsgroups data set 
an be found in the UCI repository of ma
hinelearning databases [22℄. It is a 
olle
tion of approximately 20000 newsgroupdo
uments, partitioned (nearly) evenly a
ross 20 di�erent newsgroups. The 20newsgroups 
olle
tion has be
ome a popular data set for experiments in textappli
ations of ma
hine learning te
hniques, su
h as text 
lassi�
ation and text
lustering.The data is organized into 20 di�erent newsgroups, ea
h 
orresponding to adi�erent topi
. Some of the newsgroups are very 
losely related to ea
h other,while others are highly unrelated. Here is a list of the 20 newsgroups: alt.atheism;
omp.graphi
s; 
omp.os.ms-windows.mis
; 
omp.sys.ibm.p
.hardware;
omp.sys.ma
.hardware; 
omp.windows.x; mis
.forsale; re
.autos; re
.motor
y
les;re
.sport.baseball; re
.sport.ho
key; s
i.
rypt; s
i.ele
troni
s; s
i.med; s
i.spa
e;so
.religion.
hristian; talk.politi
s.mis
; talk.politi
s.guns; talk.politi
s.mideast;talk.religion.mis
.The data set that we use in this work (20NewsGroups) is a random sub-sample of 1000 elements from the original data set (50 elements from ea
h group).This data set is a 20 
lass text 
lassi�
ation. We have prepared this data set bystemming words a

ording to the Porter Stemming Algorithm [148℄. The size ofthe 
orpus (the number of di�erent words presented in all the stemmed data set)de�nes the number of features. In this sub-sample we 
onsider only the wordsthat o

ur at least 40 times, thus obtaining a 
orpus of 565 words.2VowelsPBThe data set 2VowelsPB, represented in Fig. A.1, 
an be found in [90℄. It is aspeaker independent, four-
lass, vowel dis
rimination problem. The data 
onsistson the �rst and se
ond formants of the vowels [i℄, [I℄, [a℄ and [A℄ from 75 speakers(males, females and 
hildren). The data forms two pairs of overlapping 
lasses.
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Figure A.1: The 2VowelsPB data set.Vowels [i℄ and [I℄ form one overlapping pair of 
lasses and vowels [a℄ and [A℄ formthe other pair. The data set has 608 elements.Features: (all numeri
-valued)1 First formant value.2 Se
ond formant value.Class Distribution: 152 elements per 
lass.Breast TissueThe Breast Tissue data set 
an be found in [128℄. It 
ontains 106 elements, 9features and 6 
lasses.This data set 
onsists on ele
tri
al impedan
e measurements performed onsamples of freshly ex
ised tissue from the breast. The features, 
omputed fromthe impedan
e spe
trum obtained by measurements taken at seven di�erent fre-quen
ies, are:



152 APPENDIX A. DATA SETS1 Impedivity (ohm) at zero frequen
y.2 Phase angle at 500 KHz.3 High-frequen
y slope of phase angle.4 Impedan
e distan
e between spe
tral ends.5 Area under spe
trum.6 Area normalized by feature 4.7 Maximum of the spe
trum.8 Distan
e between feature 1 and the real part of the maximum frequen
y point.9 Length of the spe
tral 
urve.Class Distribution: Class # samplesCar
inoma 21Fibro-adenoma 15Mastopathy 18Glandular 16Conne
tive 14Adipose 22CTGThe CTG data set 
an be found in [128℄. It 
ontains 2126 elements, 16 featuresand 10 
lasses.This data set 
onsists on measurements of 
ardioto
ographi
 (CTG) exam-inations. Cardioto
ography is a popular diagnosti
 method in Obstetri
s, 
on-sisting on the analysis and interpretation of the foetal heart rate, the uterine
ontra
tions and the foetal movements. In this data set only the measures 
or-responding to the foetal heart rate signals and 
omputed by an automati
 systemare in
luded. The 
lassi�
ation of the signal patterns was performed by expertobstetri
ians (following a 
lini
al proto
ol). From the original data set (22 fea-tures) we have dis
arded 6 features as suggested in [128℄.The used features are:



1531 Baseline value in b.p.m.2 Number of a

elerations.3 Number of uterine 
ontra
tions.4 Per
entage of time with abnormal short term variability.5 Mean value of short term variability.6 Per
entage of time with abnormal long term variability.7 Mean value of long term variability.8 Number of light de
elerations.9 Histogram width (histogram of heart rate in b.p.m.).10 Low freq. of the histogram.11 High freq. of the histogram.12 Number of histogram peaks.13 Histogram mean.14 Histogram median.15 Histogram varian
e.16 Histogram tenden
y.We used in our experiments the features 2, 3 and 8 has is. However, sin
ethey represent a number of o

urren
es in a 
ertain period of time (di�erent inea
h pattern) one should transform these features and represent them as thenumber of o

urren
es per unit of time (e.g. 10 min).Class Distribution:Class # samplesCalm sleep 384REM sleep 579Calm vigilan
e 53A
tive vigilan
e 81Shift pattern 72A

elerative/de
elerative pattern 332De
elerative pattern 252Largely de
elerative pattern 107Flat-sinusoidal pattern 69Suspe
t pattern 197



154 APPENDIX A. DATA SETSDHNThe Dut
h Handwritten Numerals (DHN) data set 
an be found in [22℄. It 
on-sists on 2000 images of handwritten numerals ('0'�'9') extra
ted from a 
olle
tionof Dut
h utility maps [43℄. Ea
h image has 15×16 pixels. A sample of this dataset is depi
ted in Fig. A.2.

Figure A.2: A sample of the DHN data set.Ea
h one of the 240 features (15 ×16) 
orresponds to the pixel gray intensitylevel.Class Distribution: 200 elements (handwritten numerals) in ea
h of the 10
lasses.
DiabetesThe data set Diabetes (Pima Indians Diabetes) 
an be found in [22℄. It 
ontains768 elements, 8 features and 2 
lasses.Features (all numeri
-valued):



1551 Number of pregnan
ies.2 Plasma glu
ose 
on
entration at 2 hours in an oral glu
ose toleran
e test.3 Diastoli
 blood pressure (mm Hg).4 Tri
eps skin fold thi
kness (mm).5 2-Hour serum insulin (mu U/ml).6 Body mass index (weight in kg/(height in m)2).7 Diabetes pedigree fun
tion.8 Age (years).Class Distribution: (
lass value 1 is interpreted as "tested positive for dia-betes") Class # samples0 5001 268IonosphereThe data set Ionosphere 
an be found in [22℄. It 
ontains 351 elements, 34features and 2 
lasses.This is a radar data 
olle
ted by a system in Goose Bay, Labrador. Thissystem 
onsists on a phased array of 16 high-frequen
y antennas. The targetswere free ele
trons in the ionosphere. "Good" radar returns are those showingeviden
e of some type of stru
ture in the ionosphere. "Bad" returns are thosethat do not. Re
eived signals were pro
essed using an auto
orrelation fun
tionwhose arguments are the time of a pulse and the pulse number. Sin
e there were17 pulse numbers for the Goose Bay system, with 2 attributes per pulse number,the number of features is 34. We have removed one of the features from theoriginal data set sin
e it has the same value (zero) for all elements.Class Distribution: (
lass value 1 is interpreted as "good")



156 APPENDIX A. DATA SETSClass # samples0 1261 225IrisThe data set Iris 
an be found in [22℄. It 
ontains 150 elements, 4 features and3 
lasses.This is the well known Fisher's Iris plants data set, perhaps the best knowndatabase to be found in the pattern re
ognition literature. Fisher's paper [56℄is a 
lassi
 in the �eld and is referen
ed frequently to this day. The data set
ontains 3 
lasses, where ea
h 
lass refers to a type of Iris plant(Iris Setosa, IrisVersi
olour and Iris Virgini
a). One 
lass is linearly separable from the other 2;the latter are NOT linearly separable from ea
h other.Features: (all numeri
-valued)1 Sepal length in 
m2 Sepal width in 
m3 Petal length in 
m4 Petal width in 
mClass Distribution: 50 elements in ea
h of 3 the 
lasses.NCI Mi
roarrayThe NCI Mi
roarray data set 
an be found in [140℄. It 
ontains 64 elements,ea
h des
ribed by 6830 features, and 12 
lasses.Ea
h pattern element 
orresponds to a human tumor mi
roarray data. NCI isan example of a high-dimensional data set. The data are a 64×6830 matrix of realnumbers, ea
h representing an expression measurement for a gene (
olumn) and asample (row). There are 12 di�erent tumor types, one with just 1 representativeand three with 2 representatives. It is also, therefore, a quite unbalan
ed data



157set.Class Distribution:
Class # samplesBreast 7CNS 5Colon 7K562 2Leukemia 6MCF7 2Melanoma 8NSCLC 9Ovarian 6Prostata 2Renal 9Unknown 1

OliveThe data set Olive 
an be found in [57℄. It 
ontains 572 elements, ea
h des
ribedby 8 features, and 9 
lasses.This data set 
ontains data from eight fatty a
id 
ontents of di�erent oliveoils from several regions of Italy.Figure A.3 represents the region of origin of the 9 di�erent kinds of olive oils.The 
lass distribution is as follows:



158 APPENDIX A. DATA SETSClass # samples1-North Apulia Calabria 252-Calabria 563-South Apulia 2064-Si
ily 365-Inner Sardinia 656-Coastal Sardinia 337-East Liguria 508-West Liguria 509-Umbria 51

Figure A.3: Italian olive oil samples by nine regions of origin.SonarThe data set Sonar 
an be found in [22℄. It 
ontains 208 patterns, ea
h des
ribedby 60 features, and 2 
lasses.This data set, used by Gorman and Sejnowski in their study of the 
lassi�
a-tion of sonar signals, 
ontains 208 patterns obtained by boun
ing sonar signalso� a metal 
ylinder (111) and ro
ks (97) at various angles and under various 
on-ditions. Ea
h pattern 
orresponds to a ve
tor of 60 real numbers in the range 0.0



159to 1.0. Ea
h number represents the energy within a parti
ular frequen
y band,integrated over a 
ertain period of time.UBIRISThe data set UBIRIS is des
ribed in [153℄ and 
an be downloaded fromhttp://iris.di.ubi.pt/. UBIRIS is a data set of eye images used for biometri
re
ognition. In our experiments we used a sample of 12 graytone images with 256gray levels from this data set, some of whi
h are shown in Fig. A.4. Ea
h imagehas 60×45 pixels. Ea
h one of the 2700 features (60×45 pixels) 
orrespondsto the pixel gray intensity level. The biometri
 identi�
ation pro
ess starts bydete
ting and isolating the iris with a segmentation algorithm.

Figure A.4: Sample from UBIRIS data set.Wdb
The Wdb
 data set is the Wis
onsin Breast Can
er data set and 
an be foundin [22℄. It 
ontains 569 elements, ea
h des
ribed by 30 features, and 2 
lasses.The two 
lasses, benign and malignant, are linearly separable using all 30 inputfeatures.These 30 features are obtained from 10 original features, 
omputed from adigitized image of a �ne needle aspirate (FNA) of a breast mass. These 10 fea-



160 APPENDIX A. DATA SETStures, that des
ribe 
hara
teristi
s of the 
ell nu
lei present in the image, are
omputed for ea
h 
ell nu
leus as follows:1 Radius (mean of distan
es from 
enter to points on the perimeter).2 Texture (standard deviation of gray-s
ale values).3 Perimeter.4 Area.5 Smoothness (lo
al variation in radius lengths).6 Compa
tness (perimeter2 / area - 1.0).7 Con
avity (severity of 
on
ave portions of the 
ontour).8 Con
ave points (number of 
on
ave portions of the 
ontour).9 Symmetry.10 Fra
tal dimension ("
oastline approximation" - 1).The 30 features are obtained by 
omputing the mean, standard error, and"worst" or largest (mean of the three largest values) of the original 10 features,
omputed for ea
h image.Class distribution: 357 benign, 212 malignant.
WineThis data set 
an be found in [22℄. It 
ontains 178 elements, ea
h des
ribed by13 features, and 3 
lasses.The data is the result of a 
hemi
al analysis of wines grown in the same re-gion in Italy but derived from three di�erent 
ultivars. The analysis determinedthe quantities of 13 
hemi
al 
onstituents found in ea
h of the three types ofwines. The attributes are:



1611 Al
ohol.2 Mali
 a
id.3 Ash.4 Alkalinity of ash.5 Magnesium.6 Total phenols.7 Flavanoids.8 Non�avanoid phenols..9 Proantho
yanins.10 Color intensity.11 Hue.12 OD280/OD315 of diluted wines.13 Proline.The 
lass distribution is as follows:Class # samplesCultivar 1 59Cultivar 2 71Cultivar 3 48





Appendix BAn Assessment of HumanClustering on Bi-DimensionalDataB.1 Introdu
tionData 
lustering performed by humans is 
hara
terized by a high variability of so-lutions for non-trivial data sets. The 
omplexity and subje
tivity involved in the
lustering pro
ess are highly related to the personal experien
e and sometimesto knowledge about the problem domain. Clustering solutions may depend on avariety of features per
eived in the data set. Figure B.1 illustrates some of thefeatures that seem to have a main role in guiding human solutions to 
lustering.They are as follows:
• Conne
tedness � This is probably the most basi
 feature leading us to joinpoints into 
lusters whenever 
onne
ting paths are per
eived. This feature isvalued in the data set of Fig. B.1a when a human "sees" one 
luster insteadof two.
• Stru
turing dire
tion � This feature leads us to "see" the two arms ofthe 
ross in Fig. B.1b instead of only one 
luster. Humans are good atper
eiving stru
turing dire
tions in data set graphs, independently of thosedire
tions being straight or 
urved lines.163
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• Stru
turing density � This feature leads us to "see" two 
lusters inFig. B.1
 instead of only one.
• Stru
turing morphology � This feature leads us to "see" two 
lusters inFig. B.1d instead of only one, de
iding di�erently of the similar Fig. B.1a.The reason is that, 
ontrary to Fig. B.1a, we now identify the bulging outwart of Fig. B.1d with a known form.

(a) (b)
(
) (d)Figure B.1: Clustering features: a) 
onne
tedness; b) stru
turing dire
tion; 
)stru
turing density; d) stru
turing morphology.How mu
h in�uen
e have these features in the 
lustering pro
ess? Howdo they interplay? In order to obtain some knowledge about these issues weperformed a variety of 2D data 
lustering experiments involving 
hildren andadults. The reason to involve 
hildren in 
lustering experiments is related tothe fa
t that we expe
ted in this way to dis
riminate (and 
hara
terize) basi

lustering skills present in 
hildren from more advan
ed skills present in adults.Based on the experimental results we were able to extra
t a few guidelines onthe human approa
h to data 
lustering.



B.2. CLUSTERS EXPERIMENTS 165B.2 Clusters ExperimentsWe performed tests involving several individuals (in
luding 
hildren) in orderto grasp, based on the results, the mental pro
ess of data 
lustering. We madethe experiment with 37 individuals, 17 of them 
hildren (6-7 years old), 15adults with no knowledge about 
lustering and 5 adults with some knowledge of
lustering problems. The experiments were performed with the bi-dimensionaldata sets shown in Figure 2 and Figure 3. All data sets were manually drawnand we tried to 
reate di�erent situations using examples similar to those usuallyseen in 
lustering-related works and others 
reated by us.We have presented to the individuals all the data sets in the same order as inFigures B.2 and B.3, and they were asked to 
ir
le the possible groups of pointsin ea
h data set. We haven't given any other explanation or made any 
ommenton the way they should perform the experiment. We just said that in ea
h �guresome groups of points 
ould exist, or not, and if they thought they existed theyshould 
ir
le them with a line.A few similar data sets with small di�eren
es among them were deliberatelyin
luded in order to appre
iate how small di�eren
es in�uen
e the 
lusteringsolutions. Examples of su
h data sets are the pairs (b-f) and (p-aa).
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(a) Data set "a". (b) Data set "b". (
) Data set "
".
(d) Data set "d". (e) Data set "e". (f) Data set "f".
(g) Data set "g". (h) Data set "h". (i) Data set "i".
(j) Data set "j". (k) Data set "k". (l) Data set "l".
(m) Data set "m". (n) Data set "n". (o) Data set "o".Figure B.2: Data sets I.
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(a) Data set "p". (b) Data set "q". (
) Data set "r".
(d) Data set "s". (e) Data set "t". (f) Data set "u".
(g) Data set "v". (h) Data set "w". (i) Data set "x".
(j) Data set "y". (k) Data set "z". (l) Data set "aa".

(m) Data set "bb". (n) Data set "

". (o) Data set "dd".Figure B.3: Data sets II.
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tion, we present the results of the experiments in a global perspe
tive.The 
lustering solutions proposed by the adults and 
hildren are summarizedin Table B.1. In the labelling of the solutions, we used the label "Others" todesignate a group of various solutions di�erent from the most o

urring ones,labelled with numerals.A glan
e at Table B.1 immediately shows that the solutions proposed by theadults are more 
onsistent, exhibiting fewer solutions for ea
h data set than theones proposed by the 
hildren (6-7 years). Detailed observation of the 
hildrensolutions revealed that a large per
entage of 
hildren build 
lusters based on asmall number of points. It seems that they fo
us on more lo
al regions givingparti
ular attention to small groups. An example of su
h behavior is shown inFig. B.4.During the labelling pro
ess we only 
onsidered "well-grown" 
lusters pro-posed in the solution, disregarding very small 
lusters (up to 2 points). Thisoften happened with solutions proposed by 
hildren. An example of this situa-tion is the one depi
ted in Fig. B.4a. In this 
ase, we 
onsidered the proposed3-
luster solution like the one shown in Fig. B.20b.B.3.2 Detailed ViewIn this se
tion, we present a detailed view of the results together with statisti
alassessment and some 
omments.In order to understand in detail the 
lustering pro
ess, we have divided thedata sets into several types. Type A: data sets with well-separated 
lusters;Type B: data sets with di�erent point densities; Type C: data sets with 
rossing
lusters; Type D: data sets with nested 
lusters; Type F: data sets with spiral-shaped 
lusters; Type E: other data sets.In the next subse
tions, we take a 
loser view to ea
h group of data sets and



B.3. RESULTS 169Table B.1: Experimental results with adults and 
hildren. Column "others"refer to several isolated solutions.Adults ChildrenOptions OptionsData set 1 2 3 4 Others 1 2 3 4 Othersa 19 1 14 1 2b 20 12 5
 17 2 1 13 1 3d 9 9 1 4 10 3e 19 1 14 3f 15 5 2 13 2g 13 6 1 6 7 3h 20 14 2i 16 3 1 14 2j 19 1 9 7k 2 4 4 5 5 1 4 1 10l 10 5 5 2 6 9m 6 4 6 4 9 1 1 6n 14 6 5 10o 5 11 4 5 3 8p 12 7 1 10 3 3q 20 13 3r 14 6 9 7s 4 14 2 4 12t 19 1 12 4u 10 7 3 9 2 5v 19 1 12 4w 9 5 5 1 2 2 9 1x 8 6 6 3 3 9 1y 16 3 1 8 3 5z 16 4 10 6aa 11 8 1 8 2 5bb 16 4 5 6 5

 10 8 2 1 11 4dd 17 3 9 3 4
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(a) Example of a 
lustering solution pro-posed for data set "g". (b) Example of a 
lustering solution pro-posed for data set "v".Figure B.4: Children usually 
onsider the existen
e of small 
lusters.make some 
omments about the proposed solutions. We also present analysisof the 
lustering results with the following statisti
al tests: χ2 test for goodnessof �t to a postulated distribution; χ2 test for independen
e between the Agevariable (two 
ategories: adults and 
hildren) and Solution variable (
ategoriesto be presented in the subse
tions). The independen
e test is 
omplementedwith Cramer's V measure of asso
iation for nominal variables. The level ofsigni�
an
e of the tests was set at 5%. The usual 
onditions of validity of the χ2tests were taken into 
onsideration: for one degree of freedom no expe
ted valuebelow 5; for more than one degree of freedom no expe
ted value below 1 and nomore than 20% of the expe
ted values below 5. When these 
onditions were notmet the tests were not applied.B.3.2.1 Type A: Data sets with well-separated 
lustersIn this subse
tion, we analyze the group of data sets with well-separated 
lusters.This group is 
onstituted by the set of data sets a, b, 
, d, e, h, i, q, t, v.For these data sets there is basi
ally a unique solution shown in Fig. B.5proposed by a large majority of adults and 
hildren. Conne
tedness and some-times stru
turing dire
tion (data sets b, 
 and d) are the main features valuedin this unique 
lustering solution. The results for these data sets are shown in



B.3. RESULTS 171Table B.2.Table B.2: Experimental results with adults and 
hildren for well-separated
lusters. Adults ChildrenSolutions 1 2 Others 1 2 Othersa 19 1 14 1 2b 20 12 5
 17 2 1 13 1 3d 18 1 14 3e 19 1 14 3h 20 14 2i 16 3 1 14 2q 20 13 3t 19 1 12 4v 19 1 12 4
The χ2 test for independen
e was performed for a Solution variable with two
ategories: major solutions; minor solutions. Thus, the 2×2 Table B.3 was used.Table B.3: Major and minor solutions for independen
e test.Adults ChildrenMajor solutions 187 132Minor solutions 13 33
As expe
ted, the independen
e hypothesis was reje
ted with p≈0. TheCramer V of the asso
iation is low (V=0.2).



172 APPENDIX B. AN ASSESSMENT OF HUMAN CLUSTERING ONBI-DIMENSIONAL DATA
(a) a1. (b) b1. (
) 
1.
(d) d1. (e) e1. (f) h1.
(g) i1. (h) q1. (i) t1.

(j) v1.Figure B.5: The solutions proposed for data sets a, b, 
, e, h, i, q, t and v.B.3.2.2 Type B: Data sets with di�erent point densitiesIn this subse
tion we analyze the data sets exhibiting 
lusters with di�erent pointdensities. This group is 
onstituted by the set of data sets k, n, o, r, bb, 

. For



B.3. RESULTS 173data set "n" there is basi
ally a unique proposed solution, shown in Fig. B.6.

Figure B.6: The solution proposed for data set "n".The other Type B data sets are dis
ussed in the following paragraphs.Data set "k" This data set was probably the one with the largest number ofdi�erent proposed solutions (see Fig.B.7). Apart from the 4 
onsidered solutions(k1 to k4) the adults proposed 5 more di�erent solutions. The reasons for thisvariability 
an be attributed to the existen
e of di�erent density regions and thepe
uliar stru
ture of the data.Solution "k4" is the most signi�
ant for adults and solution "k2" for 
hildrenand adults. We think that solution "k3" was suggested by adults based on thesymmetry of the data set. We 
an see that solution "k2" gives more importan
eto the global stru
ture and that solution "k4" gives relevan
e to the lo
al stru
-ture of the data. Therefore, this data set suggests that 
hildren do not value thedensity feature to the point of sa
ri�
ing lo
al 
onne
tedness.The χ2 test for goodness of �t led us to a

ept the uniformity hypothesis(equiprobability of the solutions) for the adults (p=0.66). The χ2 test for inde-penden
e, for a Solution variable with two 
ategories ("regular 
lusters", "other
lusters"≡"non-regular 
lusters"), led us to reje
t the independen
e hypothesis(p=0.05). The Cramer V is moderate (V=0.38). The reje
tion of the indepen-den
e hypothesis is related to the fa
t that there is a regular vs. non-regular
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(a) k. (b) k1. (
) k2.

(d) k3. (e) k4.k1 k2 k3 k4 Oth.Adults 2 4 4 5 5Children 1 4 1 10Figure B.7: The solutions proposed for data set "k".balan
e for 
hildren whi
h is the opposite for adults.Data set "o" For the data set "o" the solution "o2" was proposed by themajority of the adults (see Fig.B.8).However, the χ2 test for goodness of �t led us to a

ept the uniformityhypothesis for the adults (p=0.13) and for the 
hildren (p=0.26). Therefore, thebehaviour of adults and 
hildren was quite similar in this 
ase. The χ2 test forindependen
e, for a Solution variable with the three 
ategories as above, led usto reje
t the independen
e hypothesis (p=0.056). The Cramer V is moderate(V=0.39). These �ndings further support the idea of identi
al behaviour ofadults and 
hildren when 
onne
tedness prevails over slight di�eren
es of point



B.3. RESULTS 175
(a) o. (b) o1. (
) o2.o1 o2 Oth.Adults 5 11 4Children 5 3 8Figure B.8: The solutions proposed for data set "o".density.Data set "r" This data set was produ
ed in order to try to per
eive the in�u-en
e of a high density region situated inside a low density region. The performedtests indi
ate that this high density region is 
onsidered by the majority of theindividuals, both adults (70%) and 
hildren (56%), as a separate 
luster.The χ2 test for goodness of �t led us to reje
t the uniformity hypothesis forthe adults (p=0.05) and a

ept it for the 
hildren (p=0.6) for the "regular"-"non-regular" 
ategories.Data set "bb" The results show that solution "bb1" was overwhelmingly
hosen by the adults. For the 
hildren the two solutions "bb1" and "bb2" arealmost equally suggested, 
on�rming what we noted previously: 
hildren are lessin
lined to sa
ri�
e 
onne
tedness to point density di�eren
es.The χ2 test for goodness of �t reje
ts the uniformity hypothesis for theadults and a

epts it for the 
hildren (p=0.94), 
on�rming the di�erent behaviourof 
hildren and adults. The χ2 test for independen
e, for a Solution variable
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(a) r. (b) r1. (
) r2.r1 r2 Oth.Adults 14 6Children 9 7Figure B.9: The solutions proposed for data set "r".

(a) bb. (b) bb1. (
) bb2.bb1 bb2 Oth.Adults 16 4Children 5 6 5Figure B.10: The solutions proposed for data set "bb".with the three 
ategories as above, led us to reje
t the independen
e hypothesis(p=0.004). The Cramer V is high (V=0.594). This 
an be attributed to the la
kof "Others" in the adult solutions.
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" We prepared this data set with the aim of 
omparing it withdata set "r". We have in
luded here a similar region to the one appearing inthe data set "r". We were expe
ting similar solutions in the similar regions. Weindeed obtained adult results for this data set very similar to the results for dataset "r". For the similar regions, the proposed solutions were also similar. Inthe 
hildren results, this did not happen. Children only 
onsidered the existen
eof the two most evident 
lusters (solution "

2"). It seems that many adultswere able to de
ompose the data set on several levels of 
lusters (something likehierar
hi
al 
lustering). First, by mentally 
onstru
ting 2 
lusters and se
ondly,by separating one of them in 2 
lusters. Children, on the 
ontrary, tend to valuethe most prominent feature: 
onne
tedness. We think that only a hierar
hi
almental pro
ess is able to justify the di�eren
es between adults and 
hildren inthis data set.
(a) 

. (b) 

1. (
) 

2.

1 

2 Oth.Adults 10 8 2Children 1 11 4Figure B.11: The solutions proposed for data set "

".Disregarding solution "Others", the χ2 test for goodness of �t a

epts theuniformity hypothesis for the adults (p=0.64). The χ2 test for independen
e,for a Solution variable with the three 
ategories as above, led us to reje
t the
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e hypothesis (p=0.017). The Cramer V is high (V=0.476).B.3.2.3 Type C: Data sets with 
rossing 
lustersIn this subse
tion, we analyze the group of data sets with 
rossing 
lusters. Thisgroup is 
onstituted by the set of data sets l, m, s. In the following subse
tions,we present and 
omment the di�erent proposed solutions for these data sets.Data set "l" In this data set the tests made on adults show that the preferredsolution is the one that 
onsiders the 2 arms of the 
ross.
(a) l. (b) l1. (
) l2.l1 l2 Oth.Adults 16 5 5Children 2 6 9Figure B.12: The solutions proposed for data set "l".Children prefer to 
onsider the 
ross as a single 
luster. Among the othersolutions proposed by 
hildren, there were a 
ouple of them 
onsidering thedivision of the 
ross in 4 
lusters, one for ea
h bran
h. These results suggestthat adults are able to trade 
onne
tedness by stru
turing dire
tion, a featurenot taken into a

ount by 
hildren.The χ2 test for goodness of �t a

epts the uniformity hypothesis for theadults (p=0.33) and reje
ts it for the 
hildren (p=0.018). The χ2 test for inde-
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e, for a Solution variable with the three 
ategories as above, lead us toreje
t the independen
e hypothesis (p=0.04). The Cramer V is high (V=0.415).These results support the di�erent and almost opposite behaviour of adults and
hildren.Data set "m" This data set was the one where there was more relu
tan
e in
lustering the data in more than one 
luster. Adults were divided between theexisten
e of only one 
luster and the existen
e of several 
lusters.
(a) m. (b) m1. (
) m2.

(d) m3.m1 m2 m3 Oth.Adults 6 4 6 4Children 9 1 1 6Figure B.13: The solutions proposed for data set "m".Among all the solutions, proposed by adults, the most signi�
ative was theone that 
onsidered the existen
e of 5 
lusters. This solution for data set "m"is very 
urious when 
omparing with the solutions proposed for data set "l". In
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onsidered the hypothesis of dividing the data set in4 
lusters, one for ea
h bran
h of the 
ross; however, in data set "m", maybein�uen
ed by the existen
e of a bran
h with no 
orresponden
e in the otherside of the star, adults have de
ided to 
onsider ea
h bran
h as a single 
luster.Children 
onsider this to be a single 
luster problem, as they do with data set "l".The same 
omment made previously on 
onne
tedness and stru
turing dire
tionapplies here.The χ2 test for goodness of �t a

epts the uniformity hypothesis for theadults (0.64) and reje
ts it for the 
hildren (p≈0). χ2 test for independen
e,for a Solution variable with two 
ategories - "regular 
lusters" and "non-regular
lusters" -, led us to a

ept the independen
e hypothesis (p=0.3). The CramerV is low (V=0.17).Data set "s" In this data set, almost all adults 
onsidered the existen
e of2 annular 
lusters as shown in Figure 14
, however 
hildren were unable to dothe same. We 
ould see on the solutions proposed by the 
hildren that, in some
ases, they have tried to represent the two 
lusters without su

ess due to la
k ofrepresentation skills. This is a data set where the notion of a stru
turing dire
tionis of primordial importan
e, explaining the failure of 
hildren in "seeing" solutions2. The χ2 test for goodness of �t reje
ts the uniformity hypothesis for the adults(p<0.014).B.3.2.4 Type D: Data sets with nested 
lustersIn this subse
tion we analyze the group of data sets with nested 
lusters (
lustersinside 
lusters) not 
onsidered in previous types. This group is 
onstituted bythe set of data sets p, z, aa. For data set "z" there was basi
ally a uniqueproposed solution, shown in Fig.B.15.The other Type D data sets are dis
ussed in the following subse
tions.
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(a) s. (b) s1. (
) s2.s1 s2 Oth.Adults 4 14 2Children 4 12Figure B.14: The solutions proposed for data set "s".
Figure B.15: The solution proposed for data set "z".Data set "p" Data set "p" has two di�erent proposed solutions. The majorityof both 
hildren and adults proposed solution "p1".Disregarding the solution "Others" the χ2 test for goodness of �t a

eptsthe uniformity hypothesis for the adults (p=0.23) and reje
ts it for the 
hildren(p=0.02. Disregarding the solution "Others" the χ2 test for independen
e ledus to a

ept the independen
e hypothesis (p=0.31). The Cramer V is moderate(V=0.256). Thus, although the majority 
hose "p1", the behaviour of adultsand 
hildren is di�erent and, in fa
t, there is a more than 
han
e-explained(at 5% signi�
an
e level) majority 
hoi
e of "p1" for the 
hildren. This is astrange �nding that at �rst sight 
ould lead us to think that 
hildren valued
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(a) p. (b) p1. (
) p2.p1 p2 Oth.Adults 12 7 1Children 10 3 3Figure B.16: The solutions proposed for data set "p".more than adults stru
turing dire
tion and/or morphology. However, part ofthe explanation why so many adults 
hose "p2" may be due to the di�erentpoint densities of the upper and lower part of the annular 
luster; a featurewhi
h most of the 
hildren didn't see.Data set "aa" As we previously mentioned in se
tion 2, we made this dataset similar to data set "p" for 
omparison purposes. We have separated theannular 
luster and we have shifted down the 
ir
ular 
luster so that it tou
hesthe lower se
tion of the annular 
luster. By doing that, we tried to per
eive ifthe individuals 
onsider the 
ir
ular 
luster as a separate 
luster.The results show that this solution ("aa2") was not the preferred solution,espe
ially in the 
hildren results, but it almost equals solution "aa1" (only two
lusters) in the adult results.Disregarding the solution "Others", the χ2 test for goodness of �t a

epts theuniformity hypothesis for the adults (p=0.49). Uniformity of the three 
ategoriesis marginally a

eptable for the 
hildren (p=0.06). The χ2 test for independen
e,for a Solution variable with three 
ategories as above, led us to reje
t the in-
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(a) aa. (b) aa1. (
) aa2.aa1 aa2 Oth.Adults 11 8 1Children 8 2 5Figure B.17: The solutions proposed for data set "aa".dependen
e hypothesis (p=0.038). The Cramer V is high (V=0.42). Therefore,although the "aa2" solution was not the most preferred one by the adults, thereis a 
lear di�erent behaviour of 
hildren and adults. Adults were signi�
antly(at 5% signi�
an
e level) more 
apable of taking into a

ount the stru
turingmorphologi
al feature present in solution "aa2".

B.3.2.5 Type F: Data sets with spiral-shaped 
lustersIn this subse
tion, we analyze the group of data sets with spiral-shaped 
lusters.This group is 
onstituted by the set of data sets y, dd. For both data sets, theindividuals basi
ally 
onsidered them as 2-
luster data sets (Fig.B.18), despitethe fa
t that the 
lusters present a very 
omplex stru
ture 
ompared with theother data sets. We were even surprised by the fa
t that 
hildren also re
og-nized the two spiral 
lusters presented in data set "dd"; a good illustration ofprevalen
e of a stru
turing dire
tion over 
onne
tedness.
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(a) y1. (b) dd1.Figure B.18: The most signi�
ative solutions proposed for data sets with spiralshaped 
lusters.B.3.2.6 Type E: Other data setsIn this subse
tion we analyze the group of data sets not 
onsidered in any of theprevious groups. This group is 
onstituted by the set of data sets f, g, j, u, w, x.For data set "j" there is basi
ally a unique proposed solution that 
onsiders it asa single 
luster. The other data sets are dis
ussed in the following subse
tions.Data set "f" The results suggested by adults for data set "f" were, in ouropinion, in�uen
ed by the previous solutions given to data set "b". We havealready mentioned that these two data sets were intentionally produ
ed witha small di�eren
e. In this 
ase, the two 
lusters of data set "b" were shiftedto be almost 
onne
ted (apparently). We think that this fa
t, and also thelow density in the "
onne
ting" region, was responsible for the predominant 2
lusters solution.However, in the 
hildren tests, this fa
t does not happen. It seems that thesolutions that they proposed to data set "b" did not a�e
t the proposed solutionsfor data set "f", 
on�rming the overwhelming value that 
hildren attribute to
onne
tedness.Disregarding the solution "Others", the χ2 test for goodness of �t reje
ts(at 5% signi�
an
e level) the uniformity hypothesis for both adults and 
hildren(p<0.01). The χ2 test for independen
e, for a Solution variable with the two"regular" 
ategories, led us to reje
t the independen
e hypothesis (p≈0). The
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(a) f. (b) f1. (
) f2.s1 s2 Oth.Adults 15 5Children 2 13 2Figure B.19: The solutions proposed for data set "f".Cramer V is quite high (V=0.61). Thus statisti
al analysis 
on�rms that adultand 
hildren behaviours are di�erent and opposite of ea
h other.Data set "g" The solutions for this data set are shown in Figure 20.
(a) g. (b) g1. (
) g2.g1 g2 Oth.Adults 13 6 1Children 6 7 3Figure B.20: The solutions proposed for data set "g".The majority of the adults have 
onsidered this a problem with 3 
lusters.The 
hildren results are 
onditioned by the previous mentioned fa
t that theypay a parti
ular attention to small 
lusters.



186 APPENDIX B. AN ASSESSMENT OF HUMAN CLUSTERING ONBI-DIMENSIONAL DATADisregarding solution "Others" the X2 test for goodness of �t lead us to a
-
ept the uniformity hypothesis for both 
hildren and adults (here, with p=0.08).The X2 test for independen
e, for a Solution variable with two 
ategories (g1,g2), lead us to a

ept the independen
e hypothesis (p=0.21). The Cramer V islow (V=0.22).Data set "u" Data set "u" was designed with the obje
tive of assessingwhether di�erently shaped groups, pla
ed 
lose to ea
h other were 
onsidered asone or two 
lusters. Brie�y, to assess the in�uen
e of the "stru
turing morphol-ogy" feature.
(a) u. (b) u1. (
) u2.u1 u2 Oth.Adults 10 7 3Children 9 2 5Figure B.21: The solutions proposed for data set "u".Regarding the solutions proposed by the adults, we see that surprisinglymany adults failed to re
ognize the existen
e of three 
lusters, 
orrespondingto separating the 
ir
ular 
luster from the elongated one. Children, on the
ontrary, seem to exhibit a de�nite preferen
e by "u1", valuing the "stru
turingmorphology" feature. They overwhelmingly separate the 
ir
ular 
luster fromthe elongated one.The χ2 test for goodness of �t marginally a

epts the uniformity hypothesisfor the adults (p=0.06) and reje
ts it for the 
hildren (p=0.03). The χ2 test for



B.3. RESULTS 187independen
e, for a Solution variable with the three 
ategories as above, led us toa

ept the independen
e hypothesis (p=0.23). The Cramer V is quite moderate(V=0.29).Data sets "w" and "x" The solutions proposed for data sets "w" and "x"were very similar. In both 
ases, there are 
onne
tions at the ends of the point
louds that in�uen
e the di�erent results. Although many two-
luster solutionswere proposed, more than 50% of the individuals 
onsidered these as one-
luster
ases.
(a) w. (b) w1. (
) w2.

(d) w3.w1 w2 w3 Oth.Adults 9 5 5 1Children 2 2 9 1Figure B.22: The solutions proposed for data set "w".Disregarding the solution "Others", the χ2 test for goodness of �t a

epts theuniformity hypothesis for the adults and for both data sets (p=0.48 and p=0.83for "w" and "x", respe
tively). The uniformity hypothesis was only a

epted forthe 
hildren for data set "x". Also, the χ2 test for independen
e, for a Solution
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(a) x. (b) x1. (
) x2.

(d) x3.x1 x2 x3 Oth.Adults 8 6 6Children 3 3 9 1Figure B.23: The solutions proposed for data set "x".variable with the three regular 
ategories, yielded di�erent results for the datasets: reje
tion for "w" (p=0.046) and a

eptan
e for "x" (p=0.2).These �ndings support the di�erent behaviour of adults and 
hildren, withthe adults valuing more than 
hildren the "stru
turing morphology" feature.B.4 Con
lusionsClustering solutions proposed by 
hildren are quite di�erent from those proposedby adults. We found for several data sets that the X2 test for independen
e (at5% signi�
an
e level) either a

epted the independen
e hypothesis (data setsd, g, m, p, u) or reje
ted it be
ause of adult and 
hildren 
hoi
es in oppositedire
tions (data sets f, k, l, w, x, aa, bb, 

). Thus, we found statisti
al evi-den
e supporting the thesis of di�erent 
luster behaviour of 
hildren and adults



B.4. CONCLUSIONS 189in those data sets. Children and adults showed a strong agreement of their
lustering preferen
es for the data sets where 
lustering is mainly based on the
onne
tedness or stru
turing dire
tion features (well-separated data sets, nested
lusters, spiral-shaped 
lusters).Children usually "see" small 
lusters fo
using their attention in small regions,leading to solutions with a large number of 
lusters. They praise overwhelminglythe 
onne
tedness feature to the point of sa
ri�
ing other ones.From the analysis of the di�erent types of data sets we draw the following
on
lusions:
• Conne
tedness or stru
turing-dire
tion features are the easiest features tohandle, by both adults and 
hildren.
• Children are often unable to sa
ri�
e 
onne
tedness for other features. Thisis espe
ially true when data sets exhibit 
ross-type 
lusters.
• Point density and morphologi
al stru
turing are the most di�
ult 
lusteringfeatures to handle.
• Adults seem 
apable of performing some sort of hierar
hi
al 
lustering, using
lustering features at di�erent de
ision levels. This was mainly apparent inthe solutions produ
ed for data sets "p", "k", "aa" and "

".
• A small di�eren
e in the data sets, like in the pairs "b"-"f" and "p"-"aa", 
anlead to very di�erent 
lustering solutions. This is espe
ially to be expe
tedwhen the point density and morphologi
al stru
turing features 
ome intoplay.
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