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Abstrat
The onept of entropy and related measures has been applied in learning sys-tems sine the 1980s. Several researhers have applied entropi onepts toindependent omponent analysis and blind soure separation. Several previousworks that use entropy and mutual information in neural networks are basiallyrelated to predition and regression problems.In this thesis we use entropy in two di�erent perspetives: �rst as a ostfuntion in neural networks (multi-layer pereptrons - MLP) for supervised las-si�ation problems; and seond, as the basis for a new entropi measure forunsupervised lassi�ation (lustering).Related with the new entropi ost funtion we show in the present workhow to use Rényi's quadrati entropy of the errors between the output of anMLP and the desired targets as a ost funtion in lassi�ation problems: theError Entropy Minimization Algorithm (EEM). We present several optimiza-tion proedures for this algorithm, namely: how to use an appropriate adaptivelearning rate; how to tune the smoothing parameter when performing entropygradient omputation; and, the onditions to apply a bath-sequential algorithmfor training with the EEM algorithm.Regarding unsupervised lassi�ation, we present a lustering algorithm basedon a new entropi dissimilarity matrix. This matrix is the basis for a new lus-tering proess, based on layered entropi subgraphs, whih we all LEGClust.We also used this algorithm to perform task deomposition in modular neuralnetworks for lassi�ation problems. i





Resumo
Desde os anos 80 que o oneito de entropia e medidas relaionadas se apliama sistemas de aprendizagem tendo-se assistido à apliação destes a problemasde independent omponent analysis e blind soure separation. Trabalhos pos-teriores que usam a entropia e a informação mútua em redes neuronais estãofundamentalmente relaionados om problemas de regressão e predição.No trabalho que aqui apresentamos, usamos a entropia de duas formas dis-tintas: primeiro, omo função de usto em redes neuronais (pereptrão multi-amada) para problemas de lassi�ação; segundo, omo base para um novamedida entrópia para lassi�ação não supervisionada (lustering).Relativamente à nova função de usto, mostramos omo usar a entropiaquadrátia de Rényi dos erros entre a saída do pereptrão multi-amada e asrespetivas etiquetas, omo função de usto em problemas de lassi�ação: oalgoritmo de minimização da entropia do erro (EEM). Apresentamos tambémum onjunto de optimizações para este algoritmo, nomeadamente: a adopção deuma taxa de aprendizagem variável; a a�nação do parâmetro de suavização paraestimação do gradiente da entropia; as ondições para o uso de um algoritmo"bath-sequential" para treino das redes neuronais om o algoritmo EEM.No que respeita à lassi�ação não supervisionada, apresentamos um algo-ritmo de lustering baseado numa nova matriz entrópia de dissemelhança queserve omo base para um novo proesso de lustering, ao qual hamamos LEG-CLust. Também usamos este novo algoritmo para efetuar a deomposição detarefas para redes neuronais modulares em problemas de lassi�ação.iii





Résumé
Le onept d'entropie et les mesures relationnés s'appliquent à des sistémesd'apprentissage depuis les années 80, prinipalement à des problèmes d'analysede omponents independents et de séparation aveugle de soures. Des travauxpostérieurs qui usent l'entropie et l'information mutuelle en réseaux de neuronesarti�iels sont relationnés ave la régression et la prédition.Dans ette thèse, on use l'entropie ave deux perpetives distintes: ommeune fontion de oût des réseaux de neurones (pereptron multiouhe) pour desproblèmes de lassi�ation supervisée, et omme base pour une nouvelle mesureentropique pour des problèmes de lassi�ation non supervisée.Relationné ave la nouvelle fontion de oût, on présente ii omme utiliserl'entropie quadratique de Rényi des erreurs entre la sortie du réseaux de neu-rones et les étiquettes omme fontion de oût: l'algorithme de la minimiza-tion de l'entropie de l'erreur (EEM). Nous présentons aussi quelques méthodesd'optimization de l'EEM, à savoir: omme utiliser un oe�ient d'apprentissagevariable approprié; omme ajuster le fateur d'aplanissage en alulant le gradi-ent de l'entropie; et les onditions pour appliquer un algorithme "bath-sequential"pour l'entrainement du pereptron multiouhe ave l'algorithme EEM.Ce qui onerne la lassi�ation non supervisée, nous présentons un algo-rithme pour "lustering" basé dans une nouvelle matrie de dissimilitude. Cettematrie est la base pour la nouvelle méthode de "lustering" qu'on a noméeLEGClust. On use aussi LEGCLust pour é�etuer la déomposition de tâhesdans les réseaux de neurones modulaires pour des problèmes de lassi�ation.v
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Chapter 1
Introdution
One an probably state that the modern era of lassi�ation theory has its rootson the work of Thomas Bayes and his famous theorem [16℄. However, as weknow, any kind of progress is based on previous knowledge and new develop-ments wouldn't be possible without the aomplishments of our anteessors.The foundations of lassi�ation an be viewed both from a philosophial andmathematial point of view. Plato and Aristotle, who distinguish between an"essential property" (whih would be shared by all members in a lass) froman "aidental property" (whih ould di�er among members in the lass) [42℄were perhaps the �rsts to attempt a oherent view of questions onerning hu-man understanding that led to lassi�ation theory. Later, other philosopherslike William of Okham with the onept that is now known as "Okham's ra-zor" and René Desartes who added the rigor of mathematis by his strongdependeny upon dedutive reasoning, provided the basis for the emergene oflassi�ation theory to be developed by mathematiians. Given that the Bayestheorem is a ratio of probability density funtions, there is a onnetion betweenlassi�ation and probability theory, whose initial development roughly span thetime of Pasal to Laplae. In Fig. 1.1 we an see a time window of the basifoundations of modern lassi�ation theory.Classi�ation of objets is probably one of the most ommon and anient1



2 CHAPTER 1. INTRODUCTION
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Figure 1.1: Time window of lassi�ation theory foundations.deision tasks performed by humans. It an be seen as the ability of assigninga spei� objet to a prede�ned group or lass based on a number of observedattributes of that objet. The lassi�ation proess was primarily related to ournatural senses: humans reognize or lassify objets based on the data aquiredby their natural sensors. The tehnologial evolution allowed us to developsophistiated sensors and the onsequent aquisition of more omplex signals.On the other hand by using mathematial tools one an transform the originaldata harateristis and obtain other derived features. In Fig. 1.2 we presentthe di�erent steps involved in a lassi�ation problem. The data olleted bythe sensors is onverted to spei� features that are the input for the hosenlassi�ation method.New algorithms and new strategies for lassi�ation were neessary due tothe emerging of more hallenging and omputationally demanding appliationsin several �elds suh as: bioinformatis; data mining; biometri identi�ation;speeh reognition; doument, image and video analysis and lassi�ation; in-dustrial automation; redit soring.Nowadays there are a huge variety of data lassi�ation methods. The most
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collect data
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start

endFigure 1.2: Shemati view of the lassi�ation proess.Table 1.1: Some of the most used lassi�ation methods.Based on probabilisti rules Not based on probabilisti rulesFisher's linear disriminant K-nearest neighborNaive Bayes lassi�er Fuzzy logi lassi�ersDeision trees Support vetor mahinesBayesian networks Neural networksMarkov modelsommon ones are presented in Table 1.1.Neural networks (NN) have emerged as important tools for data lassi�a-tion. The extensive use of these models has proved that they represent a validalternative to various onventional lassi�ation methods. Neural networks areused in �elds suh as funtion approximation, regression analysis, time seriespredition, data proessing, �ltering, ompression, blind signal separation orlustering. The advantages of neural networks lie in the following aspets:1. Neural networks are universal approximators [37℄.2. Neural networks are (usually) highly nonlinear mahines.



4 CHAPTER 1. INTRODUCTION3. Neural networks are adaptive, model-free mahines.4. Neural networks an estimate Bayesian a posteriori probabilities.Neural networks have been suessfully applied to real world lassi�ation tasksin �elds suh as medial diagnosis, business, pattern reognition or bio-informatis.They have also been applied to predition and ontrol problems.Early works on neural networks were mainly onerned with investigatingthe mean-square-error (MSE) and other seond-order statistis as optimalityriteria. This was due to the fat that initial researh on linear systems usedthe seond-order optimality riteria beause its quadrati performane surfaepermits to obtain analytial expressions for the optimal solution, allowing the-oretial analysis of the learning proess. The results obtained with MSE werealso very satisfatory when the sienti� ommunity started to apply it on non-linear systems. These good results and the belief that the seond-order riterionwas su�ient (supported by the entral limit theorem), made this riterion themain fous of interest for some deades. However, by the arising of more om-plex problems like those involving blind soure separation (BSS) or independentomponent analysis (ICA), researhers understood that higher order statistisshould be used to desribe properly these proesses.In 1948, Shannon [174℄ introdued what is onsidered one of the most im-portant ahievements in ommuniation systems: the onept of informationentropy. His work was the foundation of a new researh area urrently known asinformation theory. This appealing new branh of mathematis attrated sev-eral researhers that produed ontributions both in theoretial and pratialaspets. Alfred Rényi [154, 155℄ was probably the one produing the most im-portant ontribution by showing that Shannon's information theoreti quantitieswere speial ases of a more general family of de�nitions: Rényi's entropy andRényi's mutual information.Although the information measures were originally adopted in ommunia-tion systems it is suh a fundamental onept that it has been widely applied



1.1. MOTIVATION AND OBJECTIVES 5in areas suh as physis, hemistry, omputer siene, neurosiene, eonomis,biology, psyhology and linguistis. The appliation of Shannon's informationtheory to learning systems started in the late 1980s when Linsker presented thepriniple of maximum information preservation (InfoMax) [122℄ that onsists onthe maximization of the mutual information between the output and the inputof the network so that the information about the input is best preserved in theoutput. In the 1990's several researhers draw their attention to the appliationof Shannon's information-theoreti measures to ICA and BSS namely by intro-duing the priniple of maximum entropy and the priniple of minimum mutualinformation [9, 18, 118, 201, 202℄.In the late 1990's early 2000's, Prínipe and his o-workers have appliedRényi's entropy and other related optimality riteria to problems of BSS, blindonvolution and equalization, feature redution, ICA and time series predition[45, 46, 55, 150�152, 197℄.1.1 Motivation and ObjetivesIt was the in�uene of the above mentioned works of Prínipe, Xu and Erdogmus,that led us to the attempt of applying entropy to data lassi�ation problems.Sine we worked with neural networks we �rst tried to use the entropy as ostfuntion in multi-layer pereptrons (MLP). We knew that the usual MSE wasnot the most appropriate for neural network lassi�ation problems sine thisost funtion assumes that the errors (di�erene between the output of the neuralnetwork and the desired targets) are Gaussian distributed 1, and that is de�nitelynot the ase in lassi�ation problems. By using the new entropi ost funtionwe expeted to ahieve better results in data lassi�ation sine we were notlimited by the seond-order statistis of the MSE.In a later stage of our work we tried to apply entropy to unsupervised las-1This Gaussian distributed assumption is related with the maximum likelihood prinipleand the entral limit theorem.



6 CHAPTER 1. INTRODUCTIONsi�ation (lustering), in the form of a new lustering algorithm. We aimed todevelop this new lustering algorithm supported in a new dissimilarity matrixnot based on typial distane measures. As our �nal goal we intended to usethe developed algorithms in data lassi�ation with Modular Neural Networks(MNN), namely by performing an entropi task deomposition and by using theentropi ost funtion and the related optimization proedures in lassi�ationproblems.1.2 ContributionsThe main ontributions of this researh are:
• The use of Rényi's quadrati entropy of the errors as ost funtion in las-si�ation problems with MLP's, and the Error Entropy Minimization Algo-rithm (EEM). A theoretial result is presented to this respet [164℄.
• Several optimization proedures for the EEM algorithm, namely:� An appropriate adaptive learning rate [169℄.� Tuning the smoothing parameter when performing entropy gradientomputation [167℄.� A bath-sequential algorithm for neural network training with the EEMalgorithm [166℄.
• A new entropi dissimilarity matrix for lustering [168℄.
• A new lustering proess based on the previous matrix, whih we alledLEGClust [168℄.
• The appliation of the LEGClust algorithm to perform task deompositionin modular neural networks for lassi�ation problems (illustrated with sev-eral experiments) [165℄.



1.3. THESIS OUTLINE 71.3 Thesis OutlineIn Chapter 2 we give an overview of the basis of neural networks and an intro-dution to the onept of entropy and its estimation. We use this introdutionalso to present some notation.In Chapter 3, �Error Entropy Minimization Algorithm�, we present an algo-rithm for neural network training (namely multi-layer pereptrons) based on anentropi ost funtion for data lassi�ation. We also present some optimizationproedures to ahieve a more aurate and faster onvergene.Unsupervised lassi�ation, or lustering, with entropi riteria is presentedin Chapter 4 where, after presenting an introdution to lustering and to themost popular lustering algorithms, we introdue a new lustering algorithmbased on subgraphs with an entropi dissimilarity measure.In Chapter 5 we apply, to lassi�ation problems, our new entropi lusteringalgorithm for the task deomposition phase of modular neural networks.The onlusions are drawn in Chapter 6, where we also present some futureresearh diretions.In Appendix A the most important harateristis of all the real data setsused in this work are listed (arti�ial data sets are inluded in the running text).A work on human lustering of bi-dimensional arti�ial data sets is presentedin Appendix B. This work served as motivation to develop our new lusteringalgorithm.





Chapter 2De�nitions and Bakground
Sine one of the purposes of this work is the appliation of neural networks withentropi riteria to supervised lassi�ation, we start by presenting a review onneural networks and on the most important topis related to them, followedby an introdution to entropy, information theory and entropy estimation. InSetion 2.1 we present the basis of neural networks and in Setion 2.2 the basisof entropy and related onepts.2.1 Basis of Neural NetworksArti�ial Neural Networks or simply Neural Networks, also known as onnetion-ist models, are based on the attempt to mimi our nervous system, namely byusing strutures with a large number of idential and interonneted omputa-tional elements (neurons), trying to ahieve similar problem solving strategies asthe human brain. Neural networks are model-free mahines possessing universalapproximation apabilities. A possible de�nition of a neural network presentedby Haykin in [80℄ is:A Neural Network is a massively parallel distributed proessor made upof simple proessing units, whih has a natural propensity for storingexperiential knowledge and making it available for use. It resemblesthe brain in two respets: 9



10 CHAPTER 2. DEFINITIONS AND BACKGROUND1. Knowledge is aquired by the networks from the environment througha learning proess.2. Interneuron onnetion strengths, known as synapti weights, areused to store the aquired knowledge.Neural networks have advantages over lassial statistial approahes espe-ially when the training set size is small ompared with the dimensionality ofthe problem to be solved and the underlying data distribution is unknown.The �rst mathematial model of a neural network was presented by MCul-loh and Pitts [132℄, a neurophysiologist and a logiian, based on their under-standing of the nervous system. This was a very simple model of the neuronfuntion. In the following years many researhers, following this model, tried touse omputer simulations to apply it. The lose ontat between engineers, neu-rophysiologists and even psyhologists, made possible some notable progressesin the �eld. In 1958, Rosenblatt [158℄ introdued one of the fundamental foun-dations of neural networks, the Pereptron. The pereptron was able to learn, toonnet or assoiate a given input to a random output unit. It had three layers,with the middle one known as assoiation layer. This innovation beame learwhen Rosenblatt demonstrated the Pereptron Convergene Theorem [159℄. Thistheorem says that if there is a set of weighted onnetions of a pereptron, suhthat the pereptron gives the desired responses for a set of stimulus patterns,then after a �nite number of presentations of the stimulus-response pairs andappliations of the training proedure, the pereptron will onverge to that setof weights whih would enable it to respond orretly to eah stimulus in the set.Meanwhile in 1960, another system was developed by Widrow and Ho� [194℄ whoemployed the Least Mean Square (LMS) learning rule: the ADALINE (ADAp-tive LInear Element).In 1969 Minsky and Papert [135℄, allegedly following a onnetionists am-paign against the neural network followers, published a book in whih they ar-gued that there were a number of fundamental problems with pereptrons. They



2.1. BASICS OF NEURAL NETWORKS 11said that the pereptron was unable to perform ertain tasks, suh as the al-ulation of topologial funtion of onnetedness (problem of telling onnetedpatterns from disonneted ones). These limitations proved to be partiularlysigni�ant, as they showed that a pereptron ould not learn to evaluate thelogial funtion of exlusive-or (XOR). They also asserted that pereptrons andtheir possible extensions were a "sterile" diretion of researh. This aused thestagnation of neural network researh and a onsequent period of disrepute.Despite the lak of funding for neural network researh in the followingyears some authors have presented a few new ideas. Examples are the worksby Amari [8℄, Little and Shaw [124℄, Paul Werbos [193℄, Hop�eld [82, 83℄, Ko-honen [112℄, Akley, Hinton and Sejnowski [1℄, Grossberg [66, 67℄ and Rumel-hart [161℄. In fat, Rumelhart's work was one of the most important events inthe renaissane of network models. He worked in the bak-propagation algo-rithm for multi-layer pereptrons �rst introdued by Paul Werbos in his 1974PhD Thesis. Sine then, a lot of researh has been done in this �eld. Neural net-works are, nowadays, extensively used in appliation �elds suh as Engineering,Eonomis, Biology, Chemistry, Mediine, Soial Sienes, et.2.1.1 The Neuron ModelAs we said earlier, a neural network is a parallel distributed proessor made upof simple proessing units. These basi information-proessing units are knownas neurons. A diagram of a neuron is shown in Fig.2.1. This neuron is made ofthree basi omponents:1. A set of onnetions from the input signals to the summing juntion, eahone with an assoiated weight. The onnetion between input signal xj andneuron k is weighted by wkj. The �rst subsript of wkj will always referto the neuron and the seond to the input signal origin of the onnetion.These weights an have any positive or negative value.2. The summing of the input signals weighted by the respetive onnetions.



12 CHAPTER 2. DEFINITIONS AND BACKGROUND
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Figure 2.1: A nonlinear model of a neuron.3. An ativation funtion, also known as squashing funtion, responsible forlimiting the amplitude of the output yk of the neuron. The usual amplitudeof the output neuron is a losed interval [−1, 1] or [0, 1].The extra input signal x0 is permanently set to unity.The neuron is desribed by the following equation:
yk(x) = ϕ(uk) = ϕ
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 , (2.1)where x1, x2, ..., xn are the input signals, wk1, wk2, ..., wkn are the weights ofneuron k, wk0 is the bias, ϕ(.) is the ativation funtion and yk is the outputsignal of the neuron. If we de�ne w∗ as vetor (wk1, wk2, ..., wkn)T and x∗ asvetor (x1, x2, ..., xn)T we an represent equation 2.1 as:
yk(x) = ϕ(uk) = ϕ
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. (2.2)Equation 2.1 an be simpli�ed if one inludes wk0 in vetor w∗. Let w =

(wk0, wk1, ..., wkn)T and x = (x0, x1, ..., xn)T . The output of the neuron is nowde�ned by:
yk(x) = ϕ(uk) = ϕ
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. (2.3)



2.1. BASICS OF NEURAL NETWORKS 13The mentioned bias term, wk0, also known as threshold, (this bias has noth-ing to do with the statistial bias) is used to allow the transformation of thelinear ombination of the input signals and the weights. This transformationdetermines the position of the hyperplane de�ned by the linear ombination. InFig. 2.2 we an see an example of a linear deision boundary (hyperplane) in a2-dimensional input spae. The bias de�nes the position of the plane in termsof its perpendiular distane to the origin.
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Figure 2.2: The weight vetor w∗ de�nes the orientation of the deision plane
y(x) = 0, while the bias w0 de�nes the position of the plane in terms of itsperpendiular distane to the origin.The simple neuron an be viewed as a simple disriminant funtion. One anombine multiple neurons like in Fig. 2.3, to obtain a multi-lass disriminantfuntion for a problem of c lasses. In this ase we get a ombination of deisionboundaries that is always simply onneted and onvex.2.1.2 Ativation FuntionsThe ativation funtion, ϕ(u), usually a monotoni and bounded funtion, isjust a funtion that is used to introdue nonlinearity in the network. Examplesof ativation funtions are presented in Fig. 2.4.
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Figure 2.3: A multiple output neural model.
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() Tanh sigmoid funtionwith a = 1.Figure 2.4: The three most popular ativation funtions.The step funtion, also known as Heaviside or threshold funtion is de�nedby:
ϕ(u) =











1 if u ≥ 0

0 if u < 0

. (2.4)With this ativation funtion the output of the neural network is 1 if ukis nonnegative, and 0 otherwise. The neuron model with the step funtion,�rst introdued by MCulloh-Pits, and posteriorly developed by Rosenblatt, isknown as Pereptron.



2.1. BASICS OF NEURAL NETWORKS 15The logisti sigmoid funtion, de�ned as:
ϕ(u) = sig(u) =

1

1 + e−au
(2.5)and the tanh sigmoid funtion, de�ned as:

ϕ(u) = tanh(u) =
eau − e−au

eau + e−au
, (2.6)are both S-shaped urves and the two most used ativation funtions in neuralnetworks. Parameter a ontrols the slope of the urves. The outputs of the neuralnetworks having logisti and tanh ativation funtions are in the intervals [0, 1]and [−1, 1], respetively. These two ativation funtions are di�erentiable in allthe domain with derivatives (for a = 1):

sig ′(u) =
e−u

(1 + e−u)2
= sig(u)(1 − sig(u)) (2.7)and

tanh ′(u) =
4

(eu + e−u)2
= 1 − tanh2(u). (2.8)Both sigmoidal funtions possess a linear behavior near the zero rossing anda similar behavior with the step funtion for higher values of u.Funtions suh as tanh that produe both positive and negative values tendto yield faster training than funtions that produe only positive values suhas logisti sigmoid, beause of better numerial onditioning. On the otherhand, logisti sigmoid ativation funtion allows the output of the neural networkto be interpreted as posterior probabilities [21℄, providing more than a simplelassi�ation.In all our experiments with MLP's we use the tanh ativation funtion.2.1.3 Neural Networks ArhiteturesThe struture of a neural network is related to the way neurons are onnetedto eah other and with the learning algorithm. Depending on these di�erentharateristis we will have two main groups of neural networks: networks with



16 CHAPTER 2. DEFINITIONS AND BACKGROUNDonly feedforward onnetions and networks with both feedforward and feedbakonnetions. In the �rst group we an inlude the single layer neural network,the multi-layer neural network and the Kohonen network [112℄ and in the seondgroup we have the Hop�eld networks and other types of so-alled reurrent neuralnetworks.Single-layer and multi-layer neural networks are organized in layers of neu-rons. The most simple layered neural network is onstituted by the input nodesand a layer of output neurons. There are only onnetions between the inputsand the output layer (not the opposite), hene information is proessed fromthe input to the output, reason for alling them feedforward neural networks.In Fig. 2.3 we represented a feedforward neural network with multiple outputs.This neural network has a single layer of neurons (single-layer feedforward neu-ral network or single-layer pereptron). There are only onnetions from inputnodes to output neurons. The term "single-layer" refers to the layer of the pro-essing neurons. Input nodes are not onsidered to be a layer beause they aren'tinvolved in any proessing.One an have more omplex layered neural networks by adding more layers ofneurons building a multi-layer feedforward neural network also known as multi-layer pereptron (MLP). An example of suh a neural network is depited inFig. 2.5. This is a fully onneted neural network sine a neuron in any layerof the network is onneted with all the neurons/nodes of the previous layer.The output signals from the �rst layer are the inputs for the output layer. Thelayers between the input and output layers are known as hidden layers (neuronsin these layers are alled hidden neurons). In this work we use the notation
[a : b : c] to denote the struture of a neural network with one hidden layer. Inthis notation the �rst parameter, a, designates the number of inputs, the lastparameter, c, the number of output neurons and the intermediate parameter, b,the number of hidden neurons in the hidden layer (for more than one hiddenlayer we have more than one intermediate parameter).



2.1. BASICS OF NEURAL NETWORKS 17

Figure 2.5: A [6:3:2℄ multi-layer pereptron with one hidden layer.Multi-layer pereptrons are apable of more omplex mappings than single-layer pereptrons. In Fig. 2.6 we show the types of regions that one an getfrom the use of di�erent kinds of single- and multi-layer pereptrons havingthreshold ativation funtions. A single-layer pereptron an only implement alinear disriminant produing an hyperplane as deision boundary. A multi-layerpereptron with one hidden layer is able to generate an open or losed onvexregion in the input spae, whose boundary are segments of hyperplanes. Thisonvex region is obtained with the ability of the hidden layer to perform anAND operation. To get non-onvex and/or disjoint regions we must add a layerto perform the OR operation. Multi-layer pereptron with two hidden layersand threshold ativation funtions are apable of de�ning arbitrary regions.The explanation of the mapping apability of multi-layer pereptrons basedon the properties of the operation AND and OR is just a simple proof of theirability to map any region of the input spae. However, by relaxing some of theonditions, any given arbitrary deision boundary an be approximated arbitrar-ily lose by a two-layer (one hidden layer) network having sigmoidal ativationfuntions [21℄. For this reason we will use in all our experiments (if not statedotherwise) this kind of multi-layer pereptrons with one hidden layer and sigmoid
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Figure 2.6: Types of deision regions that an be obtained with single- andmulti-layer pereptrons with one or two layers of hidden units. (from [123℄)ativation funtions.In the other group of neural networks the information proessing an beoperated not only in a feedforward way but also with feedbak onnetions.Information proessing an be made from the output to the input, as in theHop�eld networks [82, 83℄ without self-feedbak, or even with a self-feedbak,as in reurrent neural networks [7, 101, 195℄, with time-delay units. These timedelayed feedbak onnetions allow the neural networks to exhibit a non-lineardynamial behavior with memory properties.2.1.4 Neural Network LearningLearning is what de�nes a neural network, it's the "reason" of its existene.Neural networks are apable of learning from the environment and to improvetheir performane through learning. The neural network learns from the inputdata and, over time, and aording with some measures, it adjusts its weightsand bias in order to ahieve a better performane. The learning proess startswith the aquisition by the neural network of the data re�eting the environment.Afterwards and aording to some rules the neural network adjusts its weights in



2.1. BASICS OF NEURAL NETWORKS 19aordane to the inputs and a performane riteria. By ontinuously hekingthe inputs and the learning state, the neural network is apable of reahing thebest possible performane for the family of funtions it is able to implement. Theset of rules on whih the neural network bases its learning is alled the learningalgorithm. There is a variety of learning algorithms, eah one o�ering its ownadvantages. Aording to [80℄, there are �ve basi learning rules: error-orretionlearning, memory based learning, Hebbian learning, ompetitive learning andBoltzmann learning (error-orretion learning is the one that we are going todisuss with more detail). Learning an also be done in a supervised (learningwith a teaher) or unsupervised (learning without a teaher) way. Supervisedlearning assumes that the desired output data (target data) is supplied togetherwith the input data.
2.1.4.1 Error-orretion learningLet us suppose we have a neural network like the one depited in Fig. 2.7, havingone or more layers, and a single output neuron and that the desired response ortarget for that output neuron is dk(n). Let us denote yk(n) the output signal ofneuron k at iteration n. Suppose that

)(nek

)(nyk

)(ndk

Figure 2.7: The error-orretion learning.



20 CHAPTER 2. DEFINITIONS AND BACKGROUNDThe error between the desired target dk(n) and the output signal yk(n) is:
ek(n) = dk(n) − yk(n). (2.9)The learning proess ats by adjusting the weights of the neural networkin suh a way that the output of the neuron beomes more and more lose tothe desired target. This adjustment an be made, for example, by doing theminimization of an error funtion E(n) de�ned in terms of the error signal ek(n)as:

E(n) =
1

2
e2
k(n). (2.10)Learning is performed by adjusting the weights of the neural network untilwe reah a steady state where the minimum E(n) is obtained. The minimizationof this error funtion an be ahieved by applying the well known delta rule orWidrow-Ho� rule [194℄. Let us onsider a single-layer neural network with linearativation funtion where wkj(n) is the value of weight wkj of the onnetionbetween neuron k and the element xj(n) of the input vetor x(n) at step n. Thedelta rule states that the adjustment ∆wkj(n) applied to weight wkj(n) at timestep n is de�ned by

∆wkj(n) = η ek(n)xj(n), (2.11)where η is a positive onstant determining the rate of learning when proessingfrom one learning step to another. Parameter η is known as the learning rateparameter.The update of the weight wkj, after omputing ∆wkj(n), is obtained by
wkj(n + 1) = wkj(n) + ∆wkj(n). (2.12)The learning rate is one of the most important parameters in the stability ofa losed-loop feedbak system like the neural network depited in Fig. 2.7. Thelearning rate must be arefully hosen so that the onvergene of the iterativelearning proess is ahieved.



2.1. BASICS OF NEURAL NETWORKS 21In the error-orretion learning the weight adjustment an be made by propa-gating bakwards, layer by layer, the error signals originated at the output of theneural network. This is done using the Bak-propagation algorithm, probably themost popular method for NN training, that we will disuss later. Other popularmethods used to perform NN learning (weight adjustment) are the onjugate-gradient, the Levenberg-Marquardt and geneti algorithms.2.1.4.2 Cost FuntionsWe saw in the previous setion that the learning proess an be made by adjust-ing the weights of the neural network in order to minimize an error funtion Ede�ned in terms of the error signal e = d − y. Error funtions are also knownas ost funtions 1 or objetive funtions. There are several ost funtions usedin NN, both for regression and lassi�ation problems. In the following list wepresent the most used ost funtions [21℄ (we are still onsidering a NN with asingle output neuron.):Sum-of-squares error 1

2

N
∑

i=1

e2
i (2.13a)Minkowski error N

∑

i=1

|ei|R (2.13b)Mean Squared error (MSE) 1

N

N
∑

i=1

e2
i (2.13)Cross-entropy error −

N
∑

i=1

[ti log yi + (1 − ti) log(yi)] (2.13d)
1The term ost funtion is used in optimization and is related to the problem of �nding anoptimal solution for a partiular problem. This optimal solution is obtained by minimizing ormaximizing a real funtion (ost or objetive funtion) by systematially hoosing the valuesof their real or integer variables.



22 CHAPTER 2. DEFINITIONS AND BACKGROUNDwhere ei = di − yi is the error for eah element i. The sum-of-squares error is apartiular ase of the Minkowski error (R=2).In this work we will show how to use an entropi ost funtion in lassi�ationproblems. This entropi ost funtion is build by omputing the entropy of theerrors ei as desribed in the following hapter.The MSE is one of the most popular ost funtions used in lassi�ationproblems with MLP's. The MSE, along with other indexes based on the squarederror, is also used to evaluate the performane of a neural network. Theseindexes are used to ompare the performane of di�erent neural network solu-tions. The following list presents the most used performane indexes (besidesthe MSE) [127℄:Error mean me =
1

N

N
∑

i=1

ei (2.14a)Absolute error mean m|e| =
1

N

N
∑

i=1

|ei| (2.14b)Relative error Erel =
1

N

N
∑

i=1

ei

xi
(2.14)Root mean square (RMS) error ERMS =

√
MSE (2.14d)The error standard deviation

σe =
1

N − 1

√

√

√

√

N
∑

i=1

(ei − me)2 (2.15)is also used as a measure to evaluate the performane in regression problems.2.1.4.3 The Bak-propagation AlgorithmIn neural networks with di�erentiable ativation funtions the error bak-propagationmethod [161℄ is the most used for updating the neural network weights. It isa omputationally e�ient method [21℄ that uses the derivatives of the error



2.1. BASICS OF NEURAL NETWORKS 23funtion with respet to the network weights and biases. This method plays aentral role in the majority of the training algorithms for multi-layer networks.Sine we use this method in our experiments we now present a brief explanation.We depit in Fig. 2.8, a simpli�ed signal �ow in a single-layer neural networkwith sigmoidal ativation funtion with fous on neuron k.
jx

kjw
)(nyk

)(ndk

)(nekFigure 2.8: The signal �ow and the bak propagated error (dot line) in asingle-layer pereptron.Let ek(n) = dk(n) − yk(n) be the error between the output of neuron k andthe desired target at step n. As we saw earlier, we need a ost funtion toperform the learning task. Let us assume the squared error ost funtion de�nedin 2.10. To update the neural network weights we use the delta rule, a gradientdesent learning rule, to move through the "weight spae" of the neuron in stepsproportional to the gradient of the ost funtion with respet to eah weight.The delta rule for the wkj weight will be:
∆wkj(n) = −η

∂E

∂wkj
. (2.16)Noting that E is a funtion of yk(n) whih, on the other hand, is a funtion of

uk and therefore they depend on the weights (Equation 2.3), in order to ompute2.16, we apply the hain rule of derivation and obtain:
∆wkj(n) = −η

∂E(n)

∂wkj

= η δk(n)xj(n),

(2.17)where the loal gradient δk(n) is de�ned by
δk(n) = ek(n)ϕ′ (uk(n)) . (2.18)



24 CHAPTER 2. DEFINITIONS AND BACKGROUNDLet us now onsider a two-layer pereptron with a simpli�ed representationin Fig. 2.9.
ix

jiw
)(ny j kjw )(nzk

)(ndk

)(nekFigure 2.9: The signal �ow and the bak propagated errors (doted lines) in atwo-layer pereptron.To ompute the update for weight wkj, one must apply the same rule as forthe previous single-layer pereptron. For the update of weight wji, one needs notonly the error bak propagated from neuron k, but also from all the neurons ofthe output layer. The error signal for a hidden neuron is determined reursivelyin terms of the error signals of all the output neurons to whih the hidden neuronis diretly onneted.Let us start by de�ning the loal gradient δj(n) for the hidden neuron j as:
δj(n) = −∂E(n)

∂yj(n)
ϕ′

j (uj(n)) . (2.19)To ompute the partial derivative ∂E(n)
∂yj(n) using all the information from theposterior neurons we must do

∂E(n)

∂yj(n)
=
∑

k

ek
∂ek(n)

∂yj(n)
, (2.20)whih, by applying the hain rule, is:

∂E(n)

∂yj(n)
= −

∑

k

ek(n)ϕ′
k(uk(n))wkj(n)

= −
∑

k

δk(n)wkj(n).

(2.21)Using 2.21 equation 2.19 an now be written as:
δj(n) = ϕ′

j(vj(n))
∑

k

ek(n)ϕ′
k(uk(n))wkj(n) (2.22)



2.1. BASICS OF NEURAL NETWORKS 25and the update of weight wji(n) an be �nally obtained as follows:
∆wji(n) = η δj(n)xi(n). (2.23)2.1.4.4 The Learning rateWe have already mentioned that the learning rate is one of the most importantfators when training a neural network. We also mentioned, in the previous se-tion, that the bak propagation algorithm, by using a gradient desent approah,performs, in eah iteration, a loal desent in the error surfae. If the learningrate is small, we will obtain small hanges in the weights and, onsequently, anextremely smooth trajetory in the error surfae. This an lead to a very slowlearning and, if the urvature of the error surfae is very smooth and hangingwith diretion, the loal gradient may not point towards the minimum, thusproduing an even slower learning. On the other hand, if we use a large learningrate, we will have large hanges in the weights ausing big "jumps" in the traje-tory in the error surfae produing a highly errati learning. A suitable learningrate parameter must be hosen for eah experiment in order to avoid the men-tioned problems. Strategies to optimize this learning proedure were made byseveral authors, mainly with the assumption that the learning rate must hangealong the learning proess; in other words, one should use an adaptive learningrate. The learning rate should be high in the beginning of the training proessand in the end one should use small learning rates in order to avoid getting outof the region near the global minimum. The adaptive learning rate is usuallybased on the following approahes:1. Start with a small learning rate and inrease it exponentially if suessive it-erations redue the error, or rapidly derease it if a signi�ant error inreaseours [13, 192℄.2. Start with a small learning rate and inrease it if suessive iterations keepgradient diretion fairly onstant, or rapidly derease it if the diretion of



26 CHAPTER 2. DEFINITIONS AND BACKGROUNDthe gradient varies greatly at eah iteration [27℄.3. An individual learning rate is given to eah weight, whih inreases if thesuessive hanges in the weights are in the same diretion and dereasesotherwise [92, 156, 177℄.4. Use a losed formula to alulate a ommon learning rate for all the weightsat eah iteration or a di�erent learning rate for eah weight [51,84,125,126℄.In Chapter 3 we shall present adaptive learning rates based on the approahes2 and 3, in the sope of neural networks trained with entropi ost funtions.2.1.4.5 Training in Sequential and Bath ModeThe training of a neural network with the bak-propagation algorithm is per-formed by presenting a set of training examples from the data set of a partiularlassi�ation problem to the network. During the training phase, one ompletepresentation of the training set to the network is alled an epoh. An usual pra-tie to train a neural network is to maintain an epoh-by-epoh learning untilthere is a stabilization of the neural network weights and the onvergene of theerror funtion over the entire training set to a minimum value. However, and toavoid over-�tting 2, this proedure must be done with some aution. To avoidthe loss of generalization apabilities we must not overtrain the network. Sometehniques to avoid this behavior are mainly based on early stopping 3; thismeans that one should stop training before the neural network has over �ttedthe training data.2Over-�tting is related with the bias/variane dilemma. When training a neural networkone an get a model with too little �exibility having high bias or a model with too muh�exibility having a high variane. A tradeo� between these two proprieties as to be aomplishto obtain a model with good generalization apabilities. An extensive disussion about thebias/variane dilemma an be found in [60℄.3We inlude a brief disussion about early stopping in the setion "Pratial Aspets ofNeural Network Implementation"



2.1. BASICS OF NEURAL NETWORKS 27When applying the bak-propagation learning we an have two di�erentlearning modes:1. Sequential Mode. In this learning mode, also referred as Online or Stohastithe weights update is performed eah time a new element from the trainingset is presented to the neural network. For eah new element x1, we omputethe error between the output y1 of the neural network and the desired target
d1, and we apply the bak-propagation algorithm to update the weights ofthe neural network. By doing this, we will have, for eah epoh, as muhweights updates as the number of elements of the training set. The bak-propagation algorithm presented earlier was denoted as a sequential modealgorithm.2. Bath Mode. In this learning mode, the bak-propagation weights updateis performed after presenting all elements of the training set to the neuralnetwork and omputing the respetive error funtion. If using the meansquared error E (2.14d) the delta rule, similar to 2.17, will be de�ned, forthe weight of the onnetion between node/neuron j and neuron k as:

∆wkj(n) = −η
∂E

∂wkj

=
η

N

N
∑

n=1

δk(n)xj(n).

(2.24)In bath mode learning we will have, for eah epoh, a single update of theweights.Eah of the presented learning modes have advantages and disadvantages;with bath mode, by estimating aurately the gradient vetor, the onvergeneto, at least, a loal minima is guarantied. Also the algorithm is more easilyparallelized. On the other hand, for the sequential mode, it is more di�ult toestablish theoretial onditions for onvergene due to its stohasti nature. Thesequential mode, however, requires less omputational memory, being preferredfor large data sets, and it is also preferred for data sets with some redundane.



28 CHAPTER 2. DEFINITIONS AND BACKGROUND2.1.5 Pratial Aspets of Neural Network ImplementationWe will present in this subsetion some of the pratial aspets related to thereal implementation of neural networks. We will disuss the normalization of thedata set, the splitting of the data set in training and test sets, the arhiteture ofthe neural network, the stopping riteria and several other pratial onditions.Let us assume that the original data set was already pre-proessed and thatproblems with missing values and noise or outliers were already treated. Inother words, we assume that our data set is a "lean" data set. The work ondata preparation for neural network data analysis in [203℄ presents a study onseveral aspets regarding data pre-proessing.The �rst thing that usually one must do to this lean data set is to performa data normalization, or standardization, to avoid that higher inputs assumea more important role in the learning proess than small inputs. The usualnormalization proesses transform the data so that:
• every feature of the data is saled in the interval [0, 1] or [−1, 1], or
• every feature is standardized to have zero mean and unitary standard devi-ation.The next step is to hoose the arhiteture of the neural network. There isno rule speifying the number of hidden layers and the number of neurons ineah hidden layer. We mentioned earlier that a neural network with one hid-den layer an approximate arbitrarily lose any deision boundary, so, for mostproblems, a two-layer neural network will be su�ient. A three-layer networkan be onsidered if a data set is partiularly hard to train. Although thereare some works suggesting formulas for determining the number of neurons inthe hidden layer (examples are [26, 59, 157, 170, 205℄), we still think that thereis nothing like experimentation. Experiments should be performed with a rangeof values for the number of hidden neurons that must be hosen taking into a-ount the omplexity of the problem. There are also some tehniques onsisting



2.1. BASICS OF NEURAL NETWORKS 29on starting with a high omplex neural network and then, during training, per-forming a pruning by eliminating those weights with small in�uene (very lowvalue) [61, 105, 173, 182℄.As for the initial values for the weights and bias, we should use random smallvalues 4. This is done to prevent the possibility that some of the initial outputvalues ould be in the saturation region of the ativation funtion. As ativationfuntions we use, in our experiments, the hyperboli tangent in all neurons.After hoosing the arhiteture of the neural network and the initial weights,and before starting the training phase we will split the data set in two di�erentsubsets: the training set and the test set (some authors onsider the partition ofthe data set in training set, validation set and test set, however, we use the testset for validation and test). Training will be performed over the training set. Thetest set will be used, in our experiments, for validation and testing. The 10-foldross validation and the leave-one-out are the most used methods for splittingthe data set. In the �rst one, the data set is randomly split in 10 subsets being,in eah experiment, nine of them used for training and one used for testing. Theexperiment is repeated 10 times, eah time one of the 10 subsets being used astest set. In the seond method, the leave-one-out, all the data exept one elementis used for training and the remain element is used for testing (the training isrepeated N times). In all our experiments we use a di�erent splitting method:a 2-fold ross validation (this was made for omparison purpose with the resultsobtained by the other elements of our researh group). In this method, eahtime, half of the data set is randomly hosen for training and the other half fortesting. Then the data sets are used with inverted roles (the original training setbeame the test set and the original test set beame the training set). We mustpoint out that, di�erent splitting will, probably, originate di�erent �nal results.Classi�ation errors using the 2-fold ross validation will, probably, be higherthan using the 10-fold ross validation.4In our experiments we use random values from a normal distribution with zero mean andunitary standard deviation, multiplied by 0.1.



30 CHAPTER 2. DEFINITIONS AND BACKGROUNDThere are several ways of stopping the training of a neural network. Wemay stop training when the error reahes a prede�ned small value, however, wewill probably have a neural network model too muh �tted to the training dataand that does not possess the generalization apability. To stop the trainingphase before this happens, we validate the model with the test set. In Fig. 2.10we represent the learning urves for training and testing/validation. Usually theneural network model does not do as well in the test set as it does in the trainingset used to build it. The training error urve dereases monotonially, as usual,as we inrease the number of epohs (theoretially we an get zero training errorif the network has enough omplexity). The model is validated periodially inthe test set. The test error urve will monotonially derease until a ertainpoint and then it will start inreasing as training ontinues. Training should bestopped in a epoh around the minimum test error. Early stopping is related to

Figure 2.10: Train error versus test error and the early stopping rule.the bias/variane trade-o� referred earlier.After training the neural network one has to test the obtained model on thetest data (if using test data for validation, the test is performed simultaneouslywith the training). In order to avoid the possibility of having reahed a loalminima in the training phase we will make several runs with di�erent initialweights. In eah experiment we usually perform 20 runs for eah ombination of



2.1. BASICS OF NEURAL NETWORKS 31the involved parameters. This number of runs, Nruns, is proposed in [89℄ if onewants to be 99% on�dent that the best-of-all runs (random starts) will resultin one of the best (lowest) 20% possible error values. This value is given by theformula:
Nruns =

ln(1 − Fw(a))

ln(1 − FX(a))
, (2.25)where Fw(a) is the level of on�dene, and FX(a), the perentage viinity of thelower tail of the distribution, whih the best-of-Nruns is expeted to provide.The �nal result of eah experiment will be the average of the errors of the

Nruns and also the respetive standard deviation. For eah run we ompute thelassi�ation error dividing the number of bad lassi�ed elements by the totalnumber of elements of the test set. The standard deviation is important whenomparing results obtained with di�erent models.One way to evaluate the errors in lassi�ation problems is to build a onfu-sion matrix, a visualization tool used to see how the neural network is onfusedin the lassi�ation of a ertain lass as another. In a onfusion matrix eaholumn represents the instanes in a predited lass, while eah row representsthe instanes in an true lass. An example of a onfusion matrix is shown inFig. 4.6There are other tools used to measure the performane of a neural network.A speial tool for a two-lass problem is the ROC urve (The Reeiver OperatorCharateristi urve). It ombines the onepts of sensitivity 5 and spei�ity 6that depend on the arbitrary seletion of a deision threshold. The ROC urve isshown to be a simple yet omplete empirial desription of this deision thresh-5Sensitivity is a statistial measure of how well a binary lassi�ation test orretly identi�esa ondition. In a medial test to determine if a person has a ertain disease, the sensitivity tothe disease is the probability that, if the person has the disease, the test will be positive. Thatis, the sensitivity is the proportion of true positives of all positive ases in the population.6Spei�ity is a statistial measure of how well a binary lassi�ation test orretly lassi�esases not belonging to that lass. In a medial test to determine if a person has a ertain disease,the spei�ity to the disease is the probability that, if the person does not have the disease, thetest will be negative. That is, the spei�ity is the proportion of true negatives of all negativeases in the population.



32 CHAPTER 2. DEFINITIONS AND BACKGROUNDold e�et, indiating all possible ombinations of the relative frequenies of thevarious kinds of orret and inorret deisions [134℄.2.2 EntropyThe onept of entropy originated from thermodynamis is widely known fromits seond law, �rst stated by Rudolf Clausius. He introdued the onept ofentropy in 1865 during the apogee of steam engines: it spei�ed the maximumenergy available for useful work. In a posterior stage, in statistial mehanis,Boltzmann stated his famous equation S = k ln W desribing the entropy (S)as the relation between the number of mirostates in a system (W ) and itsmarosopi properties (k is the Boltzmann onstant). Tsallis, in 1988, presenteda extension of the onept of entropy, stating that Boltzmann formula was notvalid for some rare events [36, 184℄:
Sq(p) =

1

q − 1

(

1 −
∑

x

pq(x)

)

. (2.26)In this ase, p is a probability distribution, and q is a real parameter. In thelimit as q → 1, the normal Boltzmann-Gibbs entropy is reovered.Claude Shannon used the same term, entropy, when he introdued his workabout ommuniations over a noisy hannel [174℄. He studied the statistialstruture of a message to be transmitted and the nature of the �nal destinationof the information. The �rst onepts of information in ommuniations wereintrodued by Nyquist and Hartley in the 1920's. In 1924 Nyquist showed thatthe speed W of transmission of information over a telegraph iruit, with a �xedline speed, is proportional to the logarithm of the number m of values used toenode the message: W = k log m where k is a onstant [143℄. Later, in 1928,Hartley generalized the onept and introdued the measure of information forommuniation [74℄, the amount of information assoiated with an event x whihours with probability p, as I = log 1
p .Entropy has been used in a variety of appliations, sattered through the large



2.2. ENTROPY 33siene spetrum. Examples are the appliations in information and oding the-ory, dynamial systems, logi and theory of algorithms, statistial inferene andpredition, physial sienes, eonomis, biology, humanities and soial sienes.2.2.1 Entropy and InformationIn a ommuniation system, the information of a ertain event is higher as smalleris its probability of ourrene. In simple ases, the amount of information isonveniently measured by the logarithm of the number of available hoies 7.Note that information here is not equivalent and must not be onfused withmeaning [185℄. The onept of information is too omplex and annot be ex-plained with a single de�nition. Two messages, one of whih is heavily loadedwith meaning and the other whih is pure nonsense, an be exatly equivalent asregards to our use of information. Information, in ommuniation theory, relatesnot so muh to what you do say, as to what you ould say. Information is one'sfreedom of hoie when one selets a message [185℄. In this sense it is learlyrelated to the initial unertainty assoiated to the message seletion.When an event is related to a previous one � when a message is produed byonseutive symbols � the probability of ourrene of the various symbols at aertain stage of the proess an be dependent on the previous one. The quantitythat measures the information of suh a proess must be expressed in termsof the various probabilities involved: those of getting to ertain stages of themessage forming proess, and the probabilities that, when in those stages, ertainsymbols will be hosen next. This quantity, moreover, involves the logarithm ofprobabilities, so that it is a natural generalization of the logarithmi measure forsimple ases.Claude Shannon de�ned preisely entropy as how muh hoie is involved inthe seletion of a ertain event or how unertain we are of the outome. Shannon,in his famous 1948 paper [174℄, introdued the onept of entropy and mutual7One of the reasons for using the logarithm is beause information should be additive:
I(ab) = I(a) + I(b).



34 CHAPTER 2. DEFINITIONS AND BACKGROUNDinformation, and laid the foundations to the new �eld of information theory.Sine then, some onepts related to Shannon's entropy were presented, likerelative entropy that was �rst de�ned, in 1951, by Kullbak and Leibler [116℄,and also some di�erent properties were found for these quantities, for example,Fano's inequality [49℄.Given a disrete random variable X taking values in the �nite set X =

{x1, x2, ..., xn} with probabilities p = (p1, p2, ..., pn), we de�ne the (Shannon)entropy of X to be the expetation of the Hartley's information measure:
H(X) = −K

n
∑

i=1

pi log2 pi , (2.27)where K is a positive onstant. The entropi measure
H(X) = −

n
∑

i=1

pi log2 pi , (2.28)(the onstant K is only related to the hoie of the unit of measure, the usedlogarithm) played an important role in information theory as a measure of in-formation, hoie and unertainty.Note that the entropy of X depends, not on the values of X, but on theirprobabilities; however we will use, as usual, H(X) as H(p).Originally Shannon used log2 and measured entropy in bits. From now onwe will use log, representing the natural logarithm.If X is a random variable with Bernoulli distribution that takes the value 0with probability 1 − p and the value 1 with probability p, the entropy is:
H(X) = −p log p − (1 − p) log(1 − p)). (2.29)As an be seen, for p = 0 or 1, there is no unertainty in the event (Xis deterministi) and so is the entropy H(X) = 0. If p = 1/2, X will havethe highest unertainty and onsequently the highest value for the entropy is

H(X) = 1 (see Fig.2.11).Entropy possesses the following properties:



2.2. ENTROPY 351. H(X) ≥ 0. The equality holds if one of the probabilities is 1 and all theothers are 0.2. H(X) is a ontinuous funtion of p.3. H(X) is symmetri. In other words, the ordering of the probabilities p1, p2, ..., pndoes not in�uene the value of H(X).4. The entropy of independent variables is additive. If X and Y are twoindependent variables with probabilities p and q then, for the entropy ofthe join event (X,Y ), we have H(X,Y ) = H(X) + H(Y ).5. H(X) ≤ log n, with equality i� p1 = p2 = ... = pn = 1
n .After Shannon other authors have presented other information entropy mea-sures having almost the same properties of the original one. Rényi presenteda generalized form of information measure based on a general theory of means,derived from the following axioms:1. the information of a ouple of independent individual events is the sum oftheir respetive information;
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Figure 2.11: The entropy of a Bernoulli variable for di�erent p.



36 CHAPTER 2. DEFINITIONS AND BACKGROUND2. the information of a random variable is a (generalized) mean information ofthe individual event information;3. the information is additive for independent random variables.The generalized mean of the real numbers x1, x2, ..., xn with weights p1, p2, ..., pnhas the form
ϕ−1

(

n
∑

k=1

pk ϕ(xk)

)

, (2.30)where ϕ() is the Kolmogorov-Nagumo funtion [113, 139℄, whih is an arbitraryontinuous and stritly monotoni funtion de�ned on the real numbers.The entropy measure should be [154, 155℄
ϕ−1

(

n
∑

k=1

pk ϕ(I(pk))

)

. (2.31)To meet the additivity ondition, ϕ() an either be ϕ(x) = x or ϕ(x) =

2(1−α)x. If the �rst expression is used, 2.31 will beome Shannon's entropy 2.28.If the latter expression is used, Rényi's entropy [155℄ is obtained instead:
HRα =

1

1 − α
log

(

n
∑

k=1

pk
α

)

, α > 0, α 6= 1 . (2.32)This entropy measure is often known as a generalized information measure,information measure of order α, or simply α-order Rényi entropy.Rényi's entropy is a family of entropy measures and has the Shannon's en-tropy (HS) as a speial ase. The relation between both entropies is de�nedby:










HRα ≥ HS ≥ HRβ if 0 < α < 1 and β > 1,

lim
α→1

HRα = HS

. (2.33)Rényi's entropy is the only entropy measure that satis�es the above three ax-ioms (inluding, of ourse, Shannon's entropy as a partiular ase) [98℄. However,there are other measures of information that do not satisfy all the axioms butare still useful for some appliations. The Havrda and Charvat's entropy [79℄:
HHα =

1

1 − α
log

(

n
∑

k=1

pk
α − 1

)

, α > 0, α 6= 1, (2.34)



2.2. ENTROPY 37is an example of an entropy measure, similar to Rényi's entropy but with di�erentsaling, that does not satisfy the additivity axiom but is still equivalent to Rényiand Shannon entropies with regard to entropy maximization [104℄. Anotherexample of an entropy measure is also H∞ = − log
(

max
k

(pk)
) [104℄.2.2.1.1 Conditional, Joint and Mutual Information MeasuresIn the previous subsetion we have de�ned the entropy of a single disrete randomvariable. The following measures extend the de�nition to a pair of disreterandom variables.Consider two disrete random variables X and Y taking values in the �-nite sets X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn} with probabilities p =

(p1, p2, ..., pn) and q = (q1, q2, ..., qm) respetively. We an see (X,Y ) as a om-pound probabilisti experiment with outome (xi, yi). Let us onsider r(xi, yi)as the joint probability, the probability that the ompound experiment (X,Y )will yield (xi, yi) as outome.As a straightforward generalization of 2.28 the joint Shannon's entropy of
(X,Y ) is de�ned as ( [35℄):

H(X,Y ) = −
n
∑

i=1

m
∑

j=1

r(xi, yj) log [r(xi, yj)] . (2.35)A straightforward extension is also the de�nition of the onditional entropyof a ertain r.v. Y , related to the probability of Y under the ondition thatoutome xi has ourred.
H(Y |xi) = −

m
∑

j=1

q(yj |xi) log [q(yj |xi)] . (2.36)Note that we use the onditional probabilities q(yj|xi), j = 1, 2, ...,m, insteadof probabilities q(yj), j = 1, 2, ...,m.The average onditional entropy of Y given X is obtained by averaging
H(Y |xi) over all the xi values as:
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n
∑

i=1

p(xi)H(Y |xi) = −
n
∑

i=1

m
∑

j=1

p(xi)q(yj |xi) log [q(yj |xi)] ;

H(Y |X) = −
n
∑

i=1

m
∑

j=1

r(xi, yj) log [q(yj|xi)] .The minimum and maximum values for the onditional entropy of Y given
X, H(Y |X) is given by the following inequalities:1. H(Y |X) ≥ 0;2. H(Y |X) ≤ H(Y ), with equality only if X and Y are independent.The main onlusion about the seond inequality is that, on average, theinformation about X leads to a redution of the unertainty of event Y . In ase
X and Y are independent, knowing X value does not help reduing the initialunertainty of Y . The same properties hold for H(X|Y ). For all r.v. X and Y ,

H(X,Y ) = H(X) + H(Y |X)

= H(Y ) + H(X|Y ). (2.37)Using 2.37 and the previous inequalities one easily derives:
H(X,Y ) = H(X) + H(Y |X) ≤ H(X) + H(Y ), (2.38)with equality only if events X and Y are independent. One an say that, if anabsolute dependene exists between the outomes of Y and X (if Y is knownafter knowing X), the onditional entropy H(Y |X) = 0 and H(X,Y ) = H(X).Relative entropy and mutual information are two further onepts relatedwith entropy whih are very important in information theory. Relative entropy,also known as the Kullbak-Leibler divergene [116℄, is a measure of the dis-similarity between two distributions and is de�ned as the expetation of thelogarithmi likelihood ratio. Relative entropy is thus de�ned as:

D(p|q) =
∑

x

p(x) log
p(x)

q(x)
, (2.39)



2.2. ENTROPY 39where p(x) and q(x) are two probability mass funtions. Although sometimesmentioned as "Kullbak-Leibler distane" this is not a true distane measurebetween two distributions sine it is not symmetri and does not satisfy thetriangular inequality. The relative entropy is used as a measure of ine�ienyof assuming that the distribution is q when the true distribution is p [35℄.Mutual information an be seen as a dependeny measure between two ran-dom variables Y and X, or the amount of information that one random variableontains about another random variable. Mutual information is thus de�ned as:
I(X,Y ) = H(Y ) − H(Y |X)

= −
n
∑

i=1

m
∑

j=1

r(xi, yj) log
r(xi, yj)

p(xi)q(yj)
. (2.40)When X and Y are independent I(X,Y ) = 0. I(X,Y ) is symmetri, that is

I(X,Y ) = I(Y,X) = H(X) − H(X|Y ). (2.41)The relationship between the presented information measures (di�erent en-tropies and mutual information) is shown in the Venn diagram of Fig.2.12. Theintersetion of the two irles will not our in the ase of independent r.v. Xand Y .
H(X)

H(Y)

H(X|Y)

H(Y|X)
I(X,Y)

Figure 2.12: Relationship between information measures.The following relationships between information measures an be easily de-rived from the Venn diagram:



40 CHAPTER 2. DEFINITIONS AND BACKGROUND1. H(X|Y ) ≤ H(X) and H(Y |X) ≤ H(Y )2. I(X,Y ) ≤ H(Y ) and I(X,Y ) ≤ H(X)3. I(X,Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X)4. H(X,Y ) = H(X|Y ) + I(X,Y ) + H(Y |X) = H(Y ) + H(X|Y ) = H(X) +

H(Y |X)5. H(X,Y ) ≤ H(X) + H(Y )Until now we have just presented information measures and related propertiesfor disrete random variables. The equivalent formulas for ontinuous randomvariables are obtained in a straightforward way, substituting summations byintegrals and probability mass funtions by probability density funtions. Theentropies of ontinuous r.v. are sometimes known as di�erential entropies. Thisway, Shannon's (di�erential) entropy is:
H(X) = −

∫ +∞

−∞
f(x) log f(x) dx, (2.42)where f(x) is the probability density funtion (pdf) of r.v. X. Analogously, the

α-order Rényi di�erential entropy is:
HRα(X) =

1

1 − α
log

(∫ +∞

−∞
fα(x) dx

)

, α > 0, α 6= 1. (2.43)The seond-order Rényi's di�erential entropy,
HR2(X) = − log

(∫ +∞

−∞
f2(x) dx

)

, (2.44)will be used later and will be referred to as the Rényi's quadrati entropy dueto the quadrati form of the pdf.Di�erential entropy follows some important extremal properties:1. If the density f is onentrated on a limited interval [a; b], then the di�er-ential entropy is maximal i� f is uniform on [a; b], and then H(f) = 0.



2.2. ENTROPY 412. If the density is onentrated on the positive half line and has a �xed expe-tation, then the di�erential entropy takes its maximum for the exponentialdistribution.3. If the density has �xed variane, then the di�erential entropy is maximumfor the Gaussian density.All the properties presented earlier, suh as joint and onditional entropiesand mutual information, are also valid for di�erential entropies [35℄.2.2.2 Entropy EstimationHow an entropy be estimated from data? One might think that this problemhas already been onlusively studied and understood. However, taking intoaount all the works presented sine Shannon's 1948 paper, it still is a urrentlyresearhed subjet espeially in what onerns di�erential entropy.Several authors have presented expliit expressions for the entropy of knownontinuous probability distributions. An overview of some formulas for univari-ate densities an be found in [117℄ and for multivariate densities in [3, 64℄. Theentropy estimation problem is rather more di�ult for unknown distributionsbeause one must estimate the probability density funtion and, when diretlyapplying formula 2.42, to use numerial integration. Before disussing entropyestimation, we will present in the following two subsetions the most used non-parametri methods to estimate the probability density funtion of a ontinuousrandom variable: the histogram-based estimator and the Parzen window estima-tor. See [129℄ for a review on nonparametri density estimation.2.2.2.1 Histogram-based Density EstimatorsAording to [181℄, the �rst histogram appeared in 1661, due to John Graunt, aLondon haberdasher, as an attempt to summarize the information olleted bythe parish priests of the Churh of England about the last 100 years births anddeaths, as was ordered by king Henry VIII, onerned with the derease of the



42 CHAPTER 2. DEFINITIONS AND BACKGROUNDEnglish population aused by the plague. This �rst histogram ame about fromthe need to summarize the mountains of olleted data.Let us onsider a sample {x1, x2, ..., xn} of observations of an i.i.d. randomvariable X ∈ R, from an unknown absolutely ontinuous probability densityfuntion g(x).The histogram-based density estimator is used to estimate the trunated 8density of g(x), f(x) (if g(x) has in�nite support) as
f(x) =















g(x)
∫ b

a
g(t)dt

x ∈ [a, b]

0 otherwise

. (2.45)Let us onsider the partition of the interval [a, b] by a = t0 < t1 < ... < ti <

... < tm = b and denote
Ti = [ti, ti+1[

qi =
∑n

k=1 Ixk∈Ti

l(Ti) = ti+1 − tiThe histogram is built by assigning to eah bin a height proportional to theprobability:
p(t) =



























qi/n t ∈ Ti;

qm−1/n t = b;

0 t /∈ [a, b]

. (2.46)The estimated density given by the histogram is therefore obtained by:
f̂H(t) =



























p(t)/l(Ti) t ∈ Ti;

p(t)/l(Tm−1) t = b;

0 t /∈ [a, b]

. (2.47)If f is bounded and has ontinuous derivatives up to order three, exept atthe endpoints of [a, b], and we onsider equal spaing, ti+1 − ti = 2h(n) ≡ 2hn,8Given the �niteness of the available data sample only a trunated pdf estimation an bereliably performed.



2.2. ENTROPY 43then, if n → ∞ and hn → 0 suh that nhn → ∞, for x ∈ [a, b], the followingholds 9 (see proof in [181℄):
MSE

(

f̂H(x)
)

= E
[(

f̂H(x) − fH(x)
)]

→ 0. (2.48)In other words, f̂H(x) onverges in the L2-norm to f(x) and, therefore, it isa onsistent estimator for f(x).2.2.2.2 Parzen Window Density EstimatorThe Parzen window estimator is a generalization of the shifted-histogram orRosenblatt's kernel estimator. Rosenblatt's approah is simply a histogramwhih, for estimating the density at x, has been shifted so that x lies at theenter of a mesh interval. The Rosenblatt estimator is therefore given by ( [160℄)
f̂n(x) =

♯ sample points in (x − hn, x + hn)

2nhn
, (2.49)where hn is a real valued number onstant for eah n, i.e.,

f̂n(x) =
Fn(x + hn) − Fn(x − hn)

2hn
, (2.50)with

Fn(x) =
♯ sample points ≤ x

n
, (2.51)the empirial distribution of the data.The Rosenblatt estimator, as the histogram-based estimator, f̂H , is also aonsistent estimate of f(x) [181℄.One an also represent Rosenblatt's shifted histogram estimator as:

f̂n(x) =
1

n

n
∑

j=1

1

hn
w

(

x − xj

hn

)

, (2.52)where w(u) =











1
2 if |u| < 1

0 otherwise

is a retangular kernel funtion.9Condition nhn → ∞ is used to guarantee that n onverges more rapidly to ∞ than hnto 0. These two parameters must be related in suh a way that, when n grows, it must growfaster than the dereasing of hn.



44 CHAPTER 2. DEFINITIONS AND BACKGROUNDA global optimal value for hn is presented in [181℄ and an be obtained fromthe integrated mean square error:
hn =

[

9

2
∫

(f ′′(x))2dx

]1/5

n−4/5. (2.53)Note that there is a faster derease in hn with the growth of n in suh a waythat ondition nhn → ∞ is satis�ed.Although Rosenblatt suggested generalizing 2.52 to estimators using di�erentbases (kernels) than step (retangular) funtions, the detailed explanation andstudy of kernel estimators is due to Parzen [146℄. Parzen onsidered the estimatorfor f(x) as
f̂n(x) =

∫ ∞

−∞

1

hn
K

(

x − y

hn

)

dFn(y) ≃ 1

nhn

n
∑

j=1

K

(

x − xj

hn

)

, (2.54)where






























∫∞
−∞ |K(y) dy| < ∞

Sup
−∞<y<∞

|K(y)| < ∞,

lim
y→∞

|y K(y)| = 0

(2.55)and










K(y) ≥ 0

∫∞
−∞ K(y) dy = 1

. (2.56)If K is a Borel funtion 10, the kernel estimator f̂n in 2.54 subjet to 2.55and 2.56 is asymptotially unbiased if hn → 0 as n → ∞, i.e,
lim
n

E
(

f̂n(x)
)

= f(x). (2.57)The estimator f̂n in 2.54 subjet to 2.55 and 2.56 is onsistent if we add theadditional onstrain lim
n→∞

nhn → ∞. Proofs of the previous theorems an befound in [181℄.10Borel funtions, also alled measurable funtions, are well-behaved funtions between mea-surable spaes.



2.2. ENTROPY 45A global optimal value for hn obtained from the minimization of the inte-grated mean square error is:
hn = n− 1

2r+1 α(K) + β(f) (2.58)with
α(K) =

[

∫

K2(y) dy

2r
(∫

yrK(y)dy/r!
)2

]1/(2r+1) and
β(f) =

[
∫

|f (r)(y)|2 dy

]−1/(2r+1)

,where r is the harateristi exponent 11 of the kernel. If K is a probabilitydensity r annot be higher than 2, with r = 2 being the most important ase.Examples of kernels with harateristi exponents of 2 are the Gaussian kernel,the double exponential or any other symmetri kernel K having x2K(x) ∈ L1.Sine we assume the funtional form of K to be given, we an evaluate α(K)more or less easily. The determination of β(f) is fraught with di�ulty beause
f(y) is unknown. Examples of values of α(K) for r = 2 are shown in Table 2.1.Table 2.1: α values for di�erent kernels with r = 2.

K α(K)

K(y) = 1/2 |y| ≤ 1 1.3510

K(y) = 15

16
(1 − y2)2 |y| ≤ 1 2.0362

K(y) = 1
√

2π
exp−y2/2 |y| < ∞ 0.7764In Parzen window estimation we are limited by the fat that β(f) is generallyunknown. One ould onsider to iteratively improve an estimation of β(f). Asan example we mention that, for a Gaussian density with standard deviation σ,we have:

∫

|f ′′(y)|2dy ≈ 0.212σ−5 ⇒ β(f) ≈ 1.3637 ⇒ hn ≈ 1.06σn−1/5. (2.59)11In fat, r is the harateristi exponent of k, the Fourier transform of the kernel K thatsatis�es onditions 2.55 and 2.56. If there exists a positive r, suh that kr = lim
u→0

[

1−k(u)
|u|r

] isnonzero and �nite, r is alled the harateristi exponent of k.



46 CHAPTER 2. DEFINITIONS AND BACKGROUND(For now on and for the sake of simpliity we will use f̂(x) and h for f̂n(x) and
hn)Aware of the fat that kernel estimators are not, in general, robust againstpoor hoies of h [181℄, some authors have suggested some values for this param-eter based on formula 2.58. Examples are the ones proposed by Silverman, bothfor unidimensional ases [179℄: the mentioned value h = 1.06σn−1/5 (formula2.59), and also

h = 0.9An−1/5 where A = min

(

σ,
IQR

1.34

)

, (2.60)where IQR is the interquartile range. Also the one proposed by Bowman andAzzalini [24℄ for multidimensional ases and assuming normal distributions:
h = σ

(

4

(m + 2)n

)
1

m+4

, (2.61)where m is the vetor dimension (for m = 1, h = σ(4/3n)0.2, similar to formula2.59).However, the hoie of h (also known as smoothing parameter or bandwidth)is always limited by the bias-variane tradeo�: the bias an be redued at theexpense of the variane, and vie versa. The bias of an estimate is the systematierror inurred in the estimation and the variane of an estimate is related to therandom error inurred in the estimation. The bias-variane dilemma applied tothe hoie of h simply means that a large h will redue the di�erenes amongthe estimates of f̂(x) for di�erent data sets (the variane) but it will inreasethe bias of f̂(x) with respet to the true density. A small h will redue the biasof f̂(x), at the expense of a larger variane in the estimates f̂(x).The Parzen window estimator for multiple dimensions is:
f̂(x) =

1

n hd

n
∑

j=1

K

(

x − xj

h

)

. (2.62)We will return to the subjet of the optimal value for h when disussingRényi's entropy estimation in the next subsetion.



2.2. ENTROPY 472.2.2.3 Di�erential Entropy EstimationAfter one of the �rst works in entropy estimation, in 1956, for disrete distribu-tions [12℄, this problem, less omplex than the estimation for ontinuous distribu-tions, was also analysed by several other authors [10,14,65,87,114,144,145,172℄;these works presented estimation methods, onvergene properties and studiedthe estimators omplexity and their statistial properties.Regarding ontinuous distributions, as we said earlier in this setion, someauthors have presented expliit formulas for the entropy of known ontinuousprobability distributions. For unknown distributions the �rst proposed estima-tors for Shannon's entropy were presented in the seventies by Dmitriev [40℄,Ahmad [2℄ and Vasiek [186℄. Other entropy estimators, mostly based on theprevious ones, were presented in the following years [19, 34, 73, 115, 136, 188℄.Dmitriev [40℄ was the �rst to propose the integral estimator of the form
Hn = −

∫

An

fn(x) log2 fn(x) dx, (2.63)to estimate Shannon's entropy for d = 1. Ahmad [2℄ estimated the entropy usingthe resubstitution estimator
Hn = − 1

n

n
∑

i=1

ln fn(Xi) (2.64)and showed the onsisteny of this estimator under ertain onditions. Otherentropy estimators like the splitting data estimator and the ross-validation es-timator, were proposed by Györ� [70�72℄ and by Ivanov [88℄ and Hall [73℄ re-spetively. These authors also studied the onsisteny and onvergene riteriafor these estimators.2.2.2.4 Rényi's Quadrati Entropy EstimationMost of the work done in the estimation of entropy is related to Shannon'sentropy. However, reent researh works use estimators of Rényi's entropy withseveral appliations in learning systems. A partiular form of Rényi's entropy is



48 CHAPTER 2. DEFINITIONS AND BACKGROUNDthe quadrati one, beause, in onjuntion with the Parzen Window probabilitydensity funtion estimation with gaussian kernel, it an be estimated in a non-parametri and very pratial way. The only estimation involved is the pdfestimation. Estimation of Rényi's quadrati entropy with Parzen window andgaussian kernel was proposed in [198℄. Posteriorly, the estimation of the general
α-order Rényi's entropy was presented in [45℄.Rényi's quadrati entropy HR2 an be estimated in the following way:Let us onsider a sample {x1, x2, ..., xn} of observations of an i.i.d. randomvariable X ∈ R. Let us remember that the Parzen window method estimatesthe pdf f(x) as

f(x) =
1

nh

n
∑

i=1

K(
x − xi

h
). (2.65)Using a simple Gaussian kernel

G(x, 1) =
1

(2π)
1
2

exp

(

−1

2
xT x

)

, (2.66)the estimated pdf f(x) using Parzen window and Gaussian kernel is:
f(x) =

1

nh

n
∑

i=1

G

(

x − xi

h
, 1

)

=
1

n

n
∑

i=1

G
(

x − xi, h
2
)

. (2.67)Noting that the integral of the produt of two Gaussians is exatly given by aGaussian funtion whose variane is the sum of the varianes of the two originalGaussian funtions ( [197℄), Rényi's quadrati entropy an be estimated by
ĤR2(x) = − log

∫ +∞

−∞

(

1

n

n
∑

i=1

G(x − xi, h
2)

)2

dx

= − log





1

n2

n
∑

i=1

n
∑

j=1

G(xi − xj , 2h
2)



 . (2.68)One an use other kernel funtions in this estimator not ahieving, however,the same onvenient evaluation of the integral.Rényi's quadrati entropy estimation will be treated with more detail in thefollowing hapter.



2.2. ENTROPY 49The α-order Rényi's entropy (2.43) an be written with an expetation op-erator as:
HRα(X) =

1

1 − α
log

∫ +∞

−∞
fα(x) dx =

1

1 − α
log E

[

fα−1(x)
]

, (2.69)and approximating this expetation operator by the sample mean, we get,
HRα(X) ≈ 1

1 − α
log

1

n

n
∑

j=1

fα−1(xj). (2.70)Substituting the Parzen window estimator 2.65 in 2.70, the nonparametriestimator for the α-order Rényi's entropy is:
ĤRα(X) =

1

1 − α
log

1

n

n
∑

j=1

[

1

n

n
∑

i=1

Kh(xj − xi)

]α−1

=
1

1 − α
log

1

nα

n
∑

j=1

[

n
∑

i=1

Kh(xj − xi)

]α−1

, (2.71)where 1
n

∑n
i=1 Kh(xj − xi) is the same as 1

nh

∑n
i=1 K(

xj−xi

h ).In [45℄ the onsisteny of this estimator, on the ondition of onsisteny ofthe related Parzen windowing and sample mean, is proved.





Chapter 3
Error Entropy MinimizationAlgorithm
We start this hapter with an overview of the appliation of information-theoretionepts in learning systems and we will present the error entropy minimizationalgorithm that was used for regression. In order to perform neural networklassi�ation following the same approah, we developed the error entropy mini-mization algorithm for lassi�ation. Further on, we present several optimizationproedures, inluding several omplements in the algorithm, in order to obtaina faster learning. In this hapter, we also present some experiments showing theresults obtained with the new algorithm and also with the implemented opti-mization proedures. These experiments show the validity of the proposed errorentropy minimization (EEM) algorithm.3.1 Entropy in Learning SystemsSine the introdution by Shannon [174℄ of the onept of entropy, and the poste-rior generalization made by Rényi [154℄, entropy and information theory oneptshave been applied to learning systems. As a matter of fat, entropy and relativeonepts have several appliations in learning systems. Some appliations are51



52 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMbased on �nding the mutual information and the onsequent relations betweenthe distributions of the variables involved in a partiular problem. Linsker [122℄proposed the Infomax priniple that onsists in maximizing the mutual informa-tion between the input and the output of a neural network. Mutual informationgives rise to either unsupervised or supervised learning rules depending on howthe problem is formulated. We an have unsupervised learning when we ma-nipulate the mutual information between the outputs of the learning system orbetween its input and output. Examples of these approahes are independentomponent analysis (ICA) and blind soure separation [9, 18℄. If the goal is tomaximize the mutual information between the output of a mapper and an ex-ternal desired response, then learning beomes supervised. Figure 3.1 shows ablok diagram of a unifying sheme for learning, based on the mutual informationriterion.

Figure 3.1: Unifying learning models with the mutual information riterion(soure [152℄).Depending on the position of the swith, learning belongs to the unsupervisedtype (position 1 and 2) or supervised type (position 3). Position 1 orrespondsto ICA or blind soure separation and position 2 to Linsker's Infomax riterion.In position 3, by maximizing the mutual information between the output of amapper and an external desired response, the learning beomes supervised.



3.1. ENTROPY IN LEARNING SYSTEMS 53Mutual information is also applied in pattern reognition and lassi�ation.Fano's inequality [49℄, mentioned earlier in Chapter 2, shows that maximizingmutual information dereases the lower bound of the probability of lassi�ationerror. It relates the probability of error to the onditional entropy. If the goalis to estimate a variable X with a disrete probability mass p(x) by alulat-ing an estimate from another random variable Y haraterized by p(x|y), Fanoinequality states that
H(Pe) + Pe log(|X | − 1) ≥ H(X|Y ), (3.1)that an be weakened to:

1 + Pe log(|X |) ≥ H(X|Y ), (3.2)where Pe = P (x 6= x̂). Applying 2.41 in 3.2 we get:
Pe ≥

H(X) − I(X,Y ) − 1

log(|X |) . (3.3)Sine the entropy of X and the log(|X |) depend only on the data, we an seethat, in order to redue the lower bound of the probability of error, one mustmaximize the mutual information between x and y.Entropy and mutual information were used in a variety of real problems,suh as noise detetion [190℄, image alignment [191℄, ryptology [25℄, time seriespredition [46, 149℄, hannel equalization [163℄ or blind soure separation andICA [19, 23, 176℄. In the last years, Prínipe and his o-workers, presented aseries of works where they suessfully applied Rényi's entropy and other derivedoptimality riteria to a huge variety of real problems, some of them related toblind soure separation, dimensionality redution, feature extration or timeseries predition [45, 46, 55, 62, 137, 149, 150, 152, 197, 198℄. In [45℄ it is statedthat Prínipe was the �rst to introdue the terminology "information theoretilearning" (ITL) into the adaptive systems literature.We may �nd some examples of appliations of entropy in the spei� �eld ofneural networks. Works presented in this subjet show that information theory



54 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMonepts may help us to build and tune neural networks to spei� problems.Examples of these appliations are the works that try to use entropy to determineand de�ne the omplexity of the neural network by de�ning bounds for it [17,41,204℄ or just by generating the neural network based on entropy [85, 183℄ or yetby performing neural network arhiteture optimization and pruning [142, 147℄.Entropy and information theory an also be ombined with neural networksto solve some real problems [28, 180℄. Other examples of the relation betweenentropy and neural networks are the works of Shraudolph [171℄ and Viola [190℄.With the spei� goal of performing supervised information-theoreti learn-ing with neural networks, the following approahes have been proposed:
• CIP (Cross Information Potential) - The CIP tries to establish the relationbetween the pdfs of two variables. These variables ould be the output ofthe network and the desired targets or the output of eah layer and thedesired targets [199℄.
• The entropy maximization of the output of the network and simultaneouslythe minimization of the entropy of the output of the data that belongs toa spei� lass. This method was proposed in [77℄, as a way of performingsupervised learning without numerial targets.
• MEE (Minimum Error Entropy) - This method onsists of the minimizationof the error entropy between the outputs of the network and the desiredtargets. This approah was proposed in [46℄ and used to make time seriespredition.We made experiments with these three methods with the goal of performingsupervised lassi�ation. None of them has shown to be appropriate for thattask. This led us to develop a new approah for lassi�ation problems that wedesribe in Setion 3.2



3.1. ENTROPY IN LEARNING SYSTEMS 553.1.1 The Error Entropy Minimization Algorithm for Regres-sionAs we have seen in Chapter 2, Rényi's quadrati entropy an be estimated ina very e�ient way. This entropi measure was used in [46, 47℄ to estimate theentropy of the errors between the output and the desired targets of an adaptivesystem. In this ase, the authors have applied Rényi's quadrati entropy intime delay neural networks of various sizes to perform short-term predition ofMakey-Glass haoti time series and nonlinear system identi�ation.Consider e = d−y to be the error between the desired and the atual outputof an adaptive system. The global minimum of Shannon's entropy of the error
e is ahieved when the pdf of the error is a Dira-δ funtion [46℄, meaning thatthe global minimum is ahieved when all errors are equal.Regarding Rényi's quadrati entropy of e:
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 = − log V (e), (3.4)it was shown that it has the loal minimum e = 0 and that the global minimumof this estimator is also e = 0. In this ase the minimum is obtained when all theerrors have the same value. Prinipe [150℄ alls V (.) the information potentialin analogy with the potential �eld in physis.In regression problems, this approah an lead to a situation where the �-nal solution, the �nal weight values, may not orrespond to a zero-mean errorsolution. Atually, in [46℄ it is stated that:"One important point to note in training with entropy is that sine en-tropy does not hange with the mean of the distribution, the algorithmwill onverge to a set of optimal weights, whih may not yield zero-meanerror. However, this an be easily orreted by properly modifying the



56 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMbias of the output proessing element of the MLP to yield zero meanerror over the training data set just after training ends."In the next setion we present the onditions to apply a similar algorithm oferror entropy minimization to lassi�ation problems.3.2 The EEM Algorithm for Supervised Classi�ationAs we saw on the previous setion, the minimization of the error entropy wasalready used in learning systems, mainly on regression and time series predition.Although in [45℄ is said that "Due to the property that the entropy estimator isinvariant to the mean of the underlying density of the samples as is the atualentropy, in supervised learning entropy annot be used to fore the mean of theerror signal to zero", we will show in this setion how to use the minimizationof the error entropy in lassi�ation problems [164℄.We will perform lassi�ation tasks, using as ost funtion Rényi's quadratientropy of the error between the output of the neural network and the desiredtargets: this yields the Error Entropy Minimization algorithm, EEM. To per-form the neural network learning, we apply the bak-propagation algorithm andonsequently the gradient desent method for entropy minimization. This samealgorithm with Shannon's entropy was proposed posteriorly in [178℄, also withgood results when omparing it with MSE and Cross-entropy.Let us see how to estimate Rényi's quadrati entropy of multi-dimensionalrandom variables.Let a = ai ∈ R
m, i = 1, ..., N , be a set of samples from the output Y ∈ R

m ofa mapping R
n 7→ R

m : Y = g(w, x), where w is a set of Neural Network weights.The Parzen window method estimates the pdf f(y) as
f(y) =
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, (3.5)where N is the number of data points, K is a kernel funtion, and h the band-
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, (3.6)will be used in his simple form, a spherial symmetri Gaussian kernel with zeromean and diagonal ovariane matrix Σ = I, where I is the m × m identitymatrix:
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. (3.7)The estimated pdf f(y) using Parzen window and simpli�ed Gaussian kernelis:
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58 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMRényi's quadrati entropy is estimated by:
ĤR2(y) = − log
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 = − log V (a). (3.10)For simpliity and sine the log is a monotoni inreasing funtion, only V (a)will be used for entropy minimization purposes.To apply the gradient desent method, we need to ompute the derivative of
V (a) with respet to a:

∂V

∂a
=

∂

∂a





1

N2

N
∑

i=1

N
∑

j=1

G(ai − aj; 0, 2h
2I)





= − 1

2N2h2

N
∑

i=1

N
∑

j=1

G(ai − aj ; 0, 2h
2I)(ai − aj). (3.11)Let us now see how to use Rényi's quadrati entropy as ost funtion in aneural network lassi�ation problem (Fig. 3.2).
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Figure 3.2: Neural network learning with entropi ost funtion.Let d ∈ R
m be the desired targets and Y the network output from thelassi�ation problem and ei = di − yi the error for eah data sample i of agiven data set. The error entropy minimization approah [46℄ used in timeseries predition, states that Rényi's Quadrati Entropy of the error, with pdfapproximated by Parzen window with Gaussian kernel, has minima along theline where the error is onstant over the whole data set. Also the global minimumof this entropy is ahieved when the pdf of the error is a Dira delta funtion.
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ĤR2(e) = − log
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 = − log V (e), (3.12)we learly see that this entropy will be minimum when the di�erenes of all theerror pairs (ei − ej) are zero. This means that the errors are all the same. Inlassi�ation problems with separable lasses, the goal is to get all the errorsequal to zero, meaning that we don't get any errors in the lassi�ation. Inlassi�ation problems with non separable lasses, the goal is to ahieve theBayes error.In the following we prove that, in lassi�ation problems, by imposing someonditions to the output range and target values, the EEM algorithm makes theerror onvergent to zero. The objetive is to minimize the entropy of the error
e = d− y and, as stated above, to ahieve the goal of e = 0 for all data samples.Corollary 1. Consider a two lass supervised lassi�ation problem with a unidi-mensional output vetor. Let y ∈ [r, s] be the output of the network and d ∈ {a, b}be the target vetor of the desired output. If r = a, s = b and a = −b then theappliation of the EEM algorithm fores the errors on eah data point to be equalto zero.Proof. De�ne the targets as d ∈ {−a, a} and onsider the output of the networkas y ∈ [−a, a]. The errors are given by e = d − y.If the true target for a given input xi is {a} then the error ei varies in
P = [0, 2a].If the true target for a given input xj is {−a} then the error ej varies in
Q = [−2a, 0].Sine the minimization of the entropy of the error makes the errors all havethe same value, r, we get ei = ej = r.But r must be in P and Q. Sine P ∩ Q = {0} follows that r = 0 and
ei = ej = 0.A similar proof an be made for multidimensional output vetors.In the EEM algorithm, the error entropy estimation is di�erent aording tothe vetor e dimension. This dimension depends on the number of MLP outputneurons that depend on the number of lasses, C, and their oding. If we use



60 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMbinary oding 1, the dimension of vetor e is ⌈log2C⌉, whereas if we use theone-out-of-C oding, the number of output neurons, as well as the dimensionof vetor e, is equal to the number of lasses 2. In the experiments that weperformed we obtained good results for both odings, but we suggest the use ofbinary oding only when the number of lasses is a power of 2; otherwise, we getan exessive number of outputs ompared with the number of lasses.In Fig. 3.3 we show examples of the support spae of the error vetor distribu-tion for two-lass and three-lass problems (output vetor dimension orrespondsto the one-out-of-C enoding).

(a) (b)Figure 3.3: The support spae (shadowed regions) for the error distribution ina (a) 2-dimensional and (b) 3-dimensional outputs (a two-lass and a three-lass problem).To apply the EEM algorithm the entropy gradient at eah point is bak-propagated into the MLP using the bak-propagation algorithm (the same usedby the MSE algorithm). The update of the neural network weights is performed1When using binary oding we an use a single output neuron to solve a two-lass problem.The single output y de�nes, for example, lass 1 if y < 0 and lass 2 if y ≥ 0. Targets areenoded as −1 and 1. For instane a four-lass problem only needs 2 outputs.2In the one-out-of-C oding the target vetors are enoded suh that d = [−1, ..., 1, ...,−1],where the 1 appears at the kth omponent for a pattern belonging to lass Ck.



3.2. THE EEM ALGORITHM FOR SUPERVISED CLASSIFICATION 61using ∆w = ±η ∂V
∂w . The ± means that we an either maximize (+) or minimize

(−) the entropy.As we have seen, by minimizing Rényi's Quadrati Entropy of the error,applying the bak-propagation algorithm, we �nd the weights of the neural net-work that yield good results in lassi�ation problems as we show in the followingexperiments. This algorithm represents a new way of performing supervised las-si�ation by using as ost funtion the entropy of the error between the outputof the MLP and the desired targets:
EH = HR2(e). (3.13)Some aspets in the implementation of the algorithm will be studied in detailin Setion 3.3; for example, how to hoose h and η and make their values adjustduring the training phase to improve the lassi�ation performane.3.2.1 Preliminary ExperimentsWemade several preliminary experiments, using multi-layer pereptrons, to showthe appliation of the EEM algorithm to data lassi�ation and we have om-pared the results with the MSE. The learning rate η and the smoothing pa-rameter h were experimentally seleted; however, we will present later severaloptimization proedures that overome the need for exhaustive experiments toobtain the ideal values for these parameters.In the �rst experiment we reated a data set onsisting of 200 data points,onstituting 4 separable lasses (Fig. 3.4).Several [2:nh:4℄ MLP's 3 were trained and tested 40 times, 150 epohs, usingEEM and also MSE. We made nh (the number of neurons in the hidden layer)vary from 3 to 6. We used the 2-fold ross validation method. The results ofthe �rst experiment are shown in Table 3.1. The last row (STD) presents the3We used in this experiment the one-out-of-C oding, and this is the reason for having 4outputs for a 4-lass problem.
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1

Figure 3.4: Data set for the �rst experiment with the EEM algorithm.standard deviation of the errors over the di�erent nh sessions. The lassi�ationerrors are smaller in EEM than in MSE.Table 3.1: The test error and standard deviations for the �rst experiment.Last row, STD, represents the standard deviation of the mean errors obtainedwith all nh values for EEM and MSE.
nh EEM MSE3 2.43(1.33) 2.93(1.46)4 2.20(1.20) 2.55(1.24)5 2.01(1.09) 2.64(1.13)6 2.09(1.02) 2.91(1.73)STD 0.18 0.19In Fig. 3.5, Fig. 3.6 and Fig. 3.7 we depited the errors produed in steps 1,10 and 40 respetively, of this �rst experiment. Sine we have a neural networkwith four outputs, the error vetors e form a 100×4 matrix. This matrix of errorsis represented in eah �gure by a 4× 4 matrix of axes with satter plots of eaholumn of the matrix against the other olumns. Diagonals are the histograms



3.2. THE EEM ALGORITHM FOR SUPERVISED CLASSIFICATION 63of eah olumn of the matrix.Analyzing these graphs we an see that the errors are loated (more visiblein the �rst iteration) in the three support regions, as depited in Fig. 3.3b andthat the error vetors onverge to the origin (0, 0, 0) during the experiment.
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Figure 3.5: Errors in the �rst iteration of an experiment with data set ofFig. 3.4.
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66 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMIn the following experiments, we used the data sets Diabetes, Wine and Iris(Appendix A ontains a summary of the harateristis of all the real data setsused in this work).Several MLP's with one hidden layer were trained and tested 20 times, 150epohs, for EEM and also for MSE. The 2-fold ross validation was used. Theresults of these experiments are presented in Table 3.2.Table 3.2: The error results of the seond set of experiments. Last row, STD,represents the standard deviation of the mean errors obtained with all nhvalues for EEM and MSE.Diabetes Wine Iris
nh EEM MSE EEM MSE EEM MSE2 23.80(0.94) 28.40(4.87) 3.62(1.30) 9.72(10.60)3 23.94(0.97) 27.25(4.72) 3.81(1.00) 4.27(3.77) 4.36(1.12) 4.72(4.75 )4 23.99(1.52) 26.42(4.53) 1.94(0.72) 3.03(1.08) 4.43(1.30) 4.75(1.27)5 23.80(1.04) 25.10(1.80) 2.50(1.01) 3.20(1.83) 4.38(1.34) 4.15(1.32)6 24.10(1.33) 24.70(1.80) 2.47(1.20) 3.06(1.43) 4.30(1.16) 3.97(1.05)7 24.10(0.90) 24.40(1.06) 2.44(1.00) 2.39(1.50) 4.41(1.42) 5.18(4.74)8 23.90(0.71) 23.90(1.18) 2.16(0.92) 2.92(1.07) 4.31(1.27) 4.65(1.32)9 24.30(1.42) 24.00(0.95) 2.22(0.83) 2.50(1.35)10 23.60(0.86) 24.10(1.20) 2.31(0.51) 2.95(1.29)11 24.02(1.00) 27.41(5.19)12 24.93(3.24) 27.64(5.04)STD 0.35 1.69 0.65 2.29 0.05 0.44The results show, in almost all experiments, a small, but better performaneof the EEM algorithm. They also show, espeially in the seond set of experi-ments, that the variation of the error along nh is smaller in the EEM than inthe MSE. This an be seen in the last row, STD, the standard deviation of themean errors obtained with all nh values for EEM and MSE. This ould meanthat the relation between the omplexity of the MLP and the results of theEEM algorithm is not so tight as for the MSE algorithm. In other words, weobtained some empirial evidene that EEM generalizes better than MSE. This



3.3. OPTIMIZATION OF THE EEM ALGORITHM 67is also hinted by the systematially lower standard deviation of the errors of theEEM when ompared with MSE. These �ndings an be understood taking intoaount that entropy is better at haraterizing the pdf of the errors than simplyMSE, whih only haraterizes their variane.3.3 Optimization of the EEM AlgorithmWe performed several adaptations to the EEM algorithm, trying to ahieve afaster onvergene and a better performane. We made some studies fousedon the learning rate parameter [169℄, on the smoothing parameter [167℄ and onombining bath and online training [166℄. In [138℄ we an �nd some populartehniques for parameter optimization, applied to information theoreti learning,partiularly in unsupervised feature extration and frequeny-doubling problems.We started the optimization of EEM algorithm by trying to make the kernelsmoothing parameter (kernel window size) h an updated variable along the train-ing proess, namely proportional to the error variane. This strategy was basedon the fat that, as we approah the optimal solution, the errors tend to zero(m-tuples of zeros) and so it makes sense to derease h sine the points are alllose to eah other. However, the estimates of the error entropy and its deriva-tive depend on the values of h; smaller h originates higher entropy estimates. Ifwe redue the value of h from one iteration to another, by that simple fat, thevalue of the entropy is higher, the opposite to our objetive of minimization ofthe entropy of the error in onseutive iterations. If, at eah algorithm iteration,we manage to minimize the entropy funtion, we an, at least theoretially, getan optimal solution. The problem found when using a variable h was that, inthe proximity of the minimum training error, the algorithm beame very unsta-ble, loosing the apability of onvergene. In Fig. 3.8 we show the behavior ofthe training urve when using a variable h, proportional to the error variane.We an see that h varies with the training error but, at a ertain stage (aroundepoh 100 and training error 10%), the algorithm loses stability never returning
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Figure 3.8: The observable instability of EEM algorithm when using variable
h in an experiment with data set 2VowelsPB.



3.3. OPTIMIZATION OF THE EEM ALGORITHM 69After performing several experiments with di�erent approahes trying tooverome this limitation, and having observed the same behavior we left behindthe possibility of using a variable h along the learning proess and we startedthe improvement of EEM algorithm by implementing an adaptive learning rate
η and a �xed smoothing parameter h.3.3.1 Adaptive Learning RateThe seond implemented optimization proedure was an adaptive learning rate η.As we have seen in Chapter 2, several authors have shown that, by adapting the ηvalue along the learning proess, one an get a better and faster onvergene in aneural network using mean squared error as ost funtion. With the experimentsto be desribed later, we tried to grasp on what onditions we ould applyan adaptive learning rate to a multi-layer pereptron trained with the EEMalgorithm. To get a faster onvergene, still obtaining good lassi�ation results,we �rst planed to adjust η as a funtion of the error entropy similarly to adjustingit as a funtion of the MSE. We will see how the variation of the learning ratealong the training proess an yield good results.As we saw in Setion 3.2, the gradient of Rényi's Quadrati Entropy of the er-ror is bak-propagated into the MLP in the same way as with the MSE algorithm.The update of the neural network weights is performed using ∆w = ±η δV

δw .The variability of the learning rate follows the simple but e�etive rule men-tioned in Setion 2.1.4.4: if the error entropy dereases between two onseutiveepohs of the training proess, then the algorithm produes an inrease in thelearning rate parameter. Similarly, if the error entropy inreases between twoonseutive epohs, then the algorithm produes a derease in the learning rateparameter and, furthermore, it restarts the update step, i.e. we reover and usethe previous "good" values of all the neural network parameters. In Setion 3.3.3we also implemented with good results two other di�erent rules: the Silva andAlmeida's rule [177℄ and the resilient bakpropagation (RProp) algorithm [156℄.



70 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMThe rule for learning rate updating is:
η(n) =











η(n−1)u if H
(n)
R2 < H

(n−1)
R2

η(n−1)d ∧ restart if H
(n)
R2 ≥ H

(n−1)
R2

, u > 1, d < 1, (3.14)where η(n) and H
(n)
R2 are, respetively, the learning rate and Rényi's Quadratientropy of the error at the nth iteration and u and d are the inreasing anddereasing fators.We performed several experiments in order to �nd good values for u and d. Inone of these tests, that we present here, we used the bi-dimensional 2VowelsPBdata set.In Fig. 3.9 we show an example of the training phases with �xed learningrate, FLR (dotted lines), and with rule 3.14 variable learning rate, VLR (solidlines), of two experiments that have produed the smallest lassi�ation errors.The use of VLR produes a ontinuous dereasing entropy urve and a minimumtraining error is ahieved.
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3.3. OPTIMIZATION OF THE EEM ALGORITHM 71algorithm produes an inrease on the entropy, then the learning rate shouldbe dereased by a onsiderable fator. Based in the several tests that we haveperformed and in the fat that our errors are always limited to a restrited set,due to the onditions mentioned in Setion 3.2, we found out that d and u shouldhave values around 0.2 and 1.2, respetively. The solid line in Fig. 3.9 representsa ase with d = 0.2 and u = 1.2.Table 3.3: Results for di�erent values for u and d.u d restart Training Error1.2 0.2 36 5.261.2 0.4 65 5.261.2 0.6 112 5.591.2 0.8 256 5.921.4 0.2 64 5.591.4 0.4 115 5.261.4 0.6 197 24.341.4 0.8 465 5.591.6 0.2 90 5.591.6 0.4 154 5.261.6 0.6 279 5.591.6 0.8 640 5.261.8 0.2 112 5.591.8 0.4 193 5.591.8 0.6 352 5.591.8 0.8 801 5.26
3.3.1.1 Experiments: EEM-VLR versus MSE-VLRWe made a �rst experiment, using multilayer pereptrons (MLP), to show the ap-pliation of the Error Entropy Minimization with Variable Learning Rate (EEM-VLR) algorithm to data lassi�ation and ompare it with Mean Square Errorwith Variable Learning Rate (MSE-VLR) algorithm. In this experiment we usedthe same data set 2VowelsPB. Several [2 : nh : 4] MLP's were trained and tested
40 times, 300 epohs, using the EEM-VLR and also the MSE-VLR. We made
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nh vary from 3 to 20. The 2-fold ross validation method was used. The resultsof this experiment are shown in Table 3.4.Table 3.4: Classi�ation errors for EEM-VLR and MSE-VLR.

nh EEM-VLR MSE-VLR3 9.68(3.31) 24.46 (9.84)4 8.18(2.30) 17.49 (9.10)5 8.54(2.81) 15.86 (8.61)6 8.73(2.51) 13.80 (7.61)7 9.22(4.60) 14.35 (8.26)8 8.67(2.60) 12.29 (6.58)9 9.03(2.51) 12.46 (7.48)10 8.77(1.88) 11.95 (6.64)11 9.90(3.55) 11.34 (6.66)12 9.30(2.56) 10.67(6.01)13 10.16(2.83) 9.44(3.84)14 10.01(2.50) 9.46(3.63)15 10.14(2.16) 8.61(1.30)16 11.50(5.54) 9.22(3.48)17 10.72(1.94) 9.77(4.97)18 12.68(4.47) 10.61(6.18)19 12.62(4.10) 9.71(4.76)20 12.94(5.80) 9.10(3.88)We see in Table 3.4 that EEM-VLR algorithm produes better results whenompared to the MSE-VLR algorithm. The smallest error is 8.18. The MSE-VLR algorithm produed better results only for larger values of the number ofneurons in the hidden layer. However, this ould be due to over-�tting, sinewe used a �xed number of epohs (no early stopping). We also see that similarresults are ahieved with less omplex MLP's using the EEM-VLR algorithm(Fig. 3.10). This may suggest that, with EEM, we need less omplex neuralnetworks, ompared to MSE in order to solve a partiular lassi�ation problem.Two more experiments were made applying the two algorithms to the data
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Figure 3.10: Results omparison between EEM-VLR and MSE-VLR for dataset 2VowelsPB.sets Diabetes and Wine.Several MLP's were trained and tested 20 times, 120 epohs, with d = 0.2and u = 1.2. Again the 2-fold ross validation was used. The initial learning ratevalue for our experiments is usually around 0.1, however one an use a di�erentvalue by observing the behaviour of the training urve4. The results of theseexperiments are shown in Table 3.5. Again, the best results (bold), in this twolassi�ation problems, were ahieved with the EEM-VLR algorithm.We present in Fig. 3.11 the results omparison between EEM-VLR and MSE-VLR with data sets Diabetes and Wine and we an see, as in the previousexperiment, that with EEM less omplex MLP's are needed to get similar resultswhen solving these two lassi�ation problems.3.3.2 The Smoothing ParameterHaving performed the �rst improvement of the EEM algorithm by using anadaptive learning rate during the training proess, we searhed for further im-4If a very small value is used for a partiular problem we will get a learning urve with aninitial very �at region indiating that the weights are updated by a very small amount. If weuse a high value for the learning rate, the training urve will have a initial very fast dereaseor, if an extremely high value is used, the algorithm an even fail to onverge.



74 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMTable 3.5: Classi�ation errors for the EEM-VLR and the MSE-VLR algo-rithms. Diabetes Wine
nh EEM-VLR MSE-VLR EEM-VLR MSE-VLR2 23.80(0.94) 28.40(4.87) 3.62(1.3) 9.72(10.6)3 23.94(0.97) 27.25(4.72) 3.81(1.00) 4.27(3.77)4 23.99(1.52) 26.42(4.53) 1.94(0.72) 3.03(1.08)5 23.79(1.04) 25.12(1.80) 2.50(1.01) 3.20(1.83)6 24.07(1.33) 24.73(1.80) 2.47(1.20) 3.06(1.43)7 24.12(0.90) 24.35(1.06) 2.44(1.00) 2.39(1.50)8 23.90(0.71) 23.87(1.18) 2.16(0.92) 2.92(1.07)9 24.26(1.42) 24.04(0.95) 2.22(0.83) 2.50(1.35)10 23.62(0.86) 24.08(1.20) 2.31(0.51) 2.95(1.29)11 24.02(1.00) 27.41(5.19)12 24.93(3.24) 27.64(5.04)provement by studying the in�uene of the value of the smoothing parameter hin the performane of the neural network. As a matter of fat, from the manyexperiments performed, we ame to reognize that the smoothing parameter isthe most important fator and the one that has more in�uene in the �nal re-sults of a lassi�ation problem, when using the EEM algorithm. The hoie ofthe smoothing parameter in the Parzen Window estimation of the probabilitydensity funtion for the omputation of the entropy and its gradient is a di�ultissue of the EEM algorithm. In the following subsetion we present a formulayielding the value of the smoothing parameter depending on the number of datasamples and on the neural network output dimension. Several experiments withreal data sets were made in order to show the validity of the proposed formula.3.3.2.1 Tuning the Smoothing ParameterOne of the problems of pdf estimation using the Parzen Window method, besidesthe hoie of the kernel, is the hoie of the smoothing parameter h. In the EEMalgorithm the value of h depends on: the di�erent odings of the number of
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(a) Classi�ation errors for data set Diabetes.
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(b) Classi�ation errors for data set Wine.Figure 3.11: Results omparison between EEM-VLR and MSE-VLR for datasets Diabetes and Wine.lasses; the number of data samples; the dimension m of the vetor e.Let us remind that for ontinuous f(x), the estimated density funtion willonverge to the true density as N → ∞ when:
h → 0 and Nh → ∞. (3.15)We have also seen in Chapter 2 that, for multidimensional ases, assumingnormal distributions and using the normal kernel, Bowman and Azzalini [24℄proposed the formula:
hop = s

(

4

(m + 2)N

) 1
m+4

, (3.16)



76 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMwhere s is the sample standard deviation, N is the number of samples and m isthe dimension of vetor x. An important fat that impedes, in our ase, the use offormula 3.16 is that our algorithm uses the entropy of e as a ontrol variable, i.e.,the algorithm progresses only if the entropy at a given iteration is smaller thanat the previous one. Sine the entropy value is proportional to the smoothingparameter value used to ompute it, if one uses a value for h proportional to thevariane of e, one might be inreasing, by this simple fat, the entropy value andthe algorithm fails to onverge to a minimum. This means that we are limitedto use a value for h that does not depend on s. Considering that the variable
e takes values, in the unidimensional ase, in the interval [−2, 2], and that themaximum standard deviation in this ase is 2, we onsidered using this value toreplae the standard deviation in formula 3.16:

hop = 2

(

4

(m + 2)N

)
1

m+4

. (3.17)Note that, in the EEM algorithm, we only need to ompute the entropyand its gradient; we do not need to estimate the probability density funtionof e. This is a relevant fat beause, in the gradient desent method, moreimportant than omputing with extreme preision the gradient is to get withrelative preision its diretion. Also, the tentative of estimating with extremeauray the probability density funtion by using very small values of h, ausesthe estimations of entropy to have high variability in onseutive epohs. Thisfat an also lead to the ourrene of loal minima. Given these onsiderations,we do not hesitate in using h values higher than the ones usually proposed forpdf estimation. Taking into aount the experimental results with several datasets we tried to formulate a rule that yields higher values of h for smaller datasets than those obtained with formula 3.17 and still induing the same behavior.We then arrived at the following formula with behavior similar to 3.17:
hop = 25

√

m

N
. (3.18)Notie the dereasing behavior with N and inreasing behavior with m as



3.3. OPTIMIZATION OF THE EEM ALGORITHM 77desired. A omparison between the values of h obtained with formulas 3.17 and3.18 for di�erent values of m is shown in Fig. 3.12.
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Figure 3.12: Value of h for formulas 3.17 (dashed) and 3.18 (solid) for m=2,3 and 4. (Marked points refer to experiments with data sets summarized inTable 3.15).In the several experiments that we have performed using formula 3.18, theresults were very satisfatory, as we will see in the next paragraph.Experiments We now desribe experiments using several di�erent real datasets with di�erent number of samples and di�erent number of lasses, namelythe Ionosphere, Sonar, Wdb, Iris, Wine and 2VowelsPB data sets.We also produed an arti�ial data set and used it as a 2-lass and as a 4-lass



78 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMlassi�ation problem in an attempt to establish the in�uene of the number oflasses in the value of the smoothing parameter. The two versions of the arti�ialdata set (that we all XOR-n), similar to an XOR problem, but with some noiseadded, are shown in Fig. 3.13.
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Figure 3.13: Arti�ial data set for the �rst two experiments.In all experiments we used [I:nh:O℄ MLP's, where I is the number of inputneurons, nh is the number of neurons in the hidden layer and O is the numberof output neurons. We applied the 2-fold ross validation method using half of



3.3. OPTIMIZATION OF THE EEM ALGORITHM 79the data for training and half for testing. The experiments for eah data setwere performed varying the number of neurons in the hidden layer, the valueof the smoothing parameter and using di�erent number of epohs. The resultsare shown in Tables 3.6, 3.7, 3.8 and 3.9. Eah result is the mean error of 20repetitions. For eah number of epohs we highlighted the 10 best results inorder to get the needed guidane about the optimum value for the smoothingparameter.In Tables 3.6 and 3.7 we show the results of the lassi�ation errors forthe XOR-n data sets. Comparing the two tables, we an see that an inreasednumber of lasses demands an inreased value of the smoothing parameter. Inthe �rst ase, (2-lass problem), the optimum value for h is about 4.0 and in theseond ase, (4-lass problem), the optimum value for h is about 4.8.The lassi�ation errors for the real data sets are shown in Tables 3.8, 3.9,3.10, 3.11, 3.12, 3.13 and 3.14. For eah data set we performed experimentswith di�erent number of epohs. In the results we highlighted (bold), for eahnumber of epohs of eah data set, the 10 smallest lassi�ation errors and, foreah data set, we underlined the best lassi�ation results.



80 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMTable 3.6: Errors (%) for XOR-n data set, 2 lasses (resp. 80, 120 and 160epohs from top to bottom).
h

nh 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.02 36.50 35.43 37.90 36.28 35.93 35.40 35.33 35.63 34.45 36.35 34.204 28.25 30.38 27.18 26.33 26.30 25.75 27.75 24.70 28.60 25.68 27.536 24.40 26.43 24.45 26.78 27.10 26.83 27.25 24.98 26.75 23.75 23.708 23.10 23.93 26.65 23.88 22.43 24.93 22.30 23.73 23.05 24.93 22.3810 23.38 27.00 26.38 25.65 27.08 21.10 26.65 25.33 21.20 25.50 25.5512 27.30 28.15 26.48 23.68 27.20 24.80 22.20 22.65 24.68 24.10 23.602 35.10 35.78 34.00 33.68 33.83 34.95 33.20 33.98 32.93 33.78 33.984 24.30 29.68 26.25 25.05 24.65 25.18 23.38 24.10 22.60 23.40 25.186 24.43 25.08 25.00 24.80 24.53 21.20 24.10 23.68 23.63 22.75 23.338 22.75 23.88 25.45 28.55 25.03 22.88 25.80 23.88 24.08 23.80 22.7510 24.48 25.75 26.75 26.63 24.70 26.23 23.30 23.43 24.20 24.93 22.6312 23.55 26.38 27.13 25.63 26.43 22.15 24.15 23.00 25.80 23.25 24.052 36.28 34.68 35.10 33.65 34.90 33.78 34.03 33.68 35.10 33.03 34.704 27.03 26.28 27.10 26.58 22.00 25.63 24.40 24.00 21.90 21.33 22.036 22.78 24.93 24.40 24.75 26.48 21.28 23.58 23.38 24.45 23.18 22.088 23.43 24.30 27.43 25.25 24.18 24.33 25.53 22.55 23.25 24.33 24.3310 23.70 26.60 25.50 26.60 24.98 25.80 23.73 22.78 23.38 23.60 22.9512 22.55 27.05 26.55 25.83 25.00 23.48 26.73 23.70 23.00 23.60 23.33Table 3.7: Errors (%) for XOR-n data sets, 4 lasses (resp. 80, 120 and 160epohs from top to bottom).
h

nh 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.02 19.00 17.65 18.90 17.75 19.10 17.38 18.18 18.68 18.83 18.68 17.404 19.08 18.13 17.98 18.18 18.50 17.73 18.78 17.98 17.70 18.33 19.106 18.13 19.10 17.90 17.73 17.95 18.65 18.00 18.48 17.30 17.65 18.108 19.30 18.73 17.85 18.30 18.30 18.20 18.13 19.18 19.53 18.40 19.5310 18.88 17.40 19.15 17.75 18.53 19.13 18.08 18.50 18.70 19.15 17.7312 19.10 18.83 18.23 18.58 18.30 18.38 18.70 18.25 18.70 19.13 18.452 18.63 20.38 18.33 18.28 18.20 18.48 17.68 17.60 17.38 17.50 17.854 19.43 19.28 18.98 18.23 18.05 18.23 18.18 18.60 18.08 18.23 18.086 18.63 18.55 19.30 17.75 18.95 18.80 18.98 18.93 17.80 17.68 17.858 20.18 18.95 18.48 18.15 18.73 18.70 18.48 18.35 17.95 18.65 18.1810 19.70 19.73 18.88 18.53 17.75 18.15 18.05 18.08 18.63 18.78 17.6812 20.63 20.45 18.38 18.65 18.80 17.78 19.15 18.50 18.78 19.15 18.552 18.35 18.60 17.93 18.88 18.08 17.33 18.43 18.38 17.40 17.60 18.184 19.45 18.63 19.50 19.38 17.95 18.85 20.08 19.13 19.68 18.45 18.706 19.80 19.00 19.75 19.68 18.90 19.03 19.28 19.30 18.85 18.33 19.458 19.20 19.30 19.60 19.35 18.90 18.28 19.60 19.05 18.78 19.30 19.0310 18.83 19.85 19.35 19.38 19.90 19.65 19.45 18.98 19.98 19.58 19.3812 19.48 19.08 19.38 19.58 19.05 19.28 19.53 19.18 19.33 19.18 19.08



3.3. OPTIMIZATION OF THE EEM ALGORITHM 81Table 3.8: Errors (%) for data set Ionosphere (resp. 40, 60 and 80 epohs).
h

nh 1.4 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6 54 33.84 12.47 12.71 13.07 12.70 13.10 12.73 13.09 12.96 12.718 19.54 12.70 12.86 12.40 12.97 12.80 12.79 12.39 12.81 12.6112 20.04 13.21 12.81 12.37 12.74 12.80 12.70 12.67 12.06 12.9016 15.29 13.13 13.20 12.82 12.77 12.67 12.26 12.73 12.80 12.7020 16.26 12.69 13.03 12.93 12.70 12.64 12.46 12.59 12.43 12.6924 17.13 12.61 13.01 13.17 13.23 12.84 12.26 12.97 12.63 12.874 12.70 13.13 13.41 13.07 13.17 12.91 13.07 13.06 12.77 13.118 12.76 13.19 13.06 12.83 13.03 12.50 13.10 13.29 12.70 12.4412 12.97 12.91 12.88 13.16 13.23 12.77 13.36 12.82 12.61 12.4416 13.24 13.01 12.91 12.94 12.86 12.66 12.89 12.46 12.44 12.2920 13.54 12.80 12.80 13.16 12.84 12.94 12.24 12.41 12.29 13.1624 13.27 13.14 12.83 12.71 13.19 12.60 12.87 12.41 12.96 12.874 13.07 13.47 14.20 13.33 13.00 13.10 12.81 13.04 12.61 13.168 13.02 13.28 13.14 12.83 12.71 13.00 12.62 12.40 12.41 12.5612 13.00 13.40 13.40 12.94 12.70 13.11 12.88 12.64 13.29 12.6016 13.09 13.18 13.00 12.53 12.33 12.73 12.24 12.34 12.67 12.6020 13.17 12.87 12.80 13.06 12.90 12.83 12.69 12.94 12.73 12.6324 13.49 13.20 13.50 12.69 12.90 12.59 12.63 12.99 12.72 13.06
Table 3.9: Errors (%) for data set Sonar (resp. 50, 100 and 150 epohs).

h

nh 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.02 49.47 48.49 24.90 24.78 23.17 24.37 23.82 24.04 24.11 24.50 24.264 48.63 45.77 23.65 23.27 23.68 23.05 23.70 24.06 23.82 23.82 23.156 49.18 45.67 23.61 22.96 23.53 22.28 23.61 22.98 24.18 21.73 23.428 48.97 43.22 22.96 22.40 24.28 23.08 22.72 22.98 24.04 22.81 23.5610 48.56 41.37 22.88 22.65 23.77 23.34 22.76 22.98 23.08 22.21 22.1212 50.65 43.73 23.17 23.03 23.66 24.18 22.36 22.81 23.13 22.81 22.962 48.36 36.71 24.64 24.02 24.16 23.99 23.51 24.64 24.06 23.56 23.584 49.90 35.36 23.44 24.52 24.33 22.40 24.47 24.04 24.35 23.58 23.776 49.30 37.74 23.41 23.51 23.49 24.52 23.00 22.45 23.15 23.37 23.138 49.04 35.53 24.06 22.86 22.84 24.35 22.81 23.82 22.12 23.44 22.4010 48.41 34.52 23.94 23.29 24.42 22.81 23.10 23.29 23.27 23.44 22.6712 49.81 31.42 23.80 23.08 23.08 22.74 23.87 22.74 21.32 21.61 22.142 50.82 31.63 25.53 24.23 25.31 24.06 24.33 24.98 24.42 25.41 23.734 50.48 28.10 24.52 24.52 24.45 24.06 23.85 23.17 23.56 23.58 23.896 50.00 27.81 23.92 23.08 23.27 22.26 23.99 23.29 22.14 23.51 23.088 49.86 29.88 24.18 22.33 22.67 22.67 23.00 23.05 23.32 22.84 21.9510 50.82 26.90 25.00 24.13 22.74 23.41 22.86 22.26 23.17 23.27 22.0712 49.95 25.51 23.61 24.52 23.15 23.25 22.67 22.88 22.00 22.07 22.60
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Table 3.10: Errors (%) for data set Wdb (resp. 40, 60 and 80 epohs).

h

nh 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.02 50.34 8.83 2.53 2.77 2.83 2.84 2.91 2.67 3.28 2.89 2.694 52.31 10.37 2.33 2.70 2.75 2.87 2.77 2.76 2.88 2.85 2.916 51.22 19.04 2.65 2.61 2.90 2.64 2.91 2.92 3.31 2.79 3.098 49.44 19.74 2.57 2.71 2.84 2.58 3.07 2.84 2.97 2.94 3.1910 46.88 21.80 3.01 2.77 2.78 2.97 2.90 2.59 3.28 2.95 2.982 51.54 10.71 2.79 2.97 3.05 2.97 2.72 2.94 3.07 3.06 2.984 51.16 11.46 2.80 2.83 3.06 3.01 3.06 3.04 2.93 3.02 3.146 49.32 11.48 3.07 2.91 3.06 3.06 2.81 3.04 3.02 3.25 3.168 47.58 9.74 2.95 2.83 2.97 3.07 2.97 2.88 3.06 3.07 3.1710 45.97 19.47 2.82 2.96 3.05 3.08 3.23 3.24 3.49 3.28 3.372 48.80 4.41 2.77 2.95 2.96 3.26 3.13 3.06 3.03 3.15 3.304 46.52 2.89 2.81 3.23 3.04 2.87 3.11 3.26 3.08 3.05 3.496 49.48 5.49 3.08 3.75 3.11 3.12 3.17 3.22 3.06 3.28 3.498 48.60 5.83 3.00 3.06 3.08 2.99 2.95 2.99 3.21 3.20 3.3510 48.58 6.11 2.92 2.91 3.08 3.06 3.05 3.36 3.34 3.40 3.35
Table 3.11: Errors (%) for data set Iris (resp. 40, 60 and 80 epohs).

h

nh 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.02 7.97 7.17 6.77 7.37 4.70 5.50 4.80 5.50 7.40 5.54 5.004 7.20 6.63 4.43 4.87 6.67 4.30 4.20 4.10 4.67 3.90 4.376 6.33 4.60 4.77 4.10 4.67 4.83 4.37 4.33 4.63 4.20 4.078 9.20 4.63 3.83 4.40 4.10 5.50 4.73 4.57 4.97 4.47 4.0010 7.27 4.24 4.70 4.40 4.03 4.53 4.23 4.37 4.50 4.27 4.532 5.07 4.80 5.87 8.40 6.37 6.60 6.60 6.37 4.60 5.40 5.704 5.23 3.67 4.67 4.10 5.00 3.97 4.47 3.80 4.23 4.53 4.036 5.07 4.50 4.27 3.93 3.97 3.97 3.80 4.40 4.07 4.20 4.438 4.40 3.87 4.07 4.27 3.97 3.87 4.20 4.50 4.13 4.40 4.1310 4.90 4.30 4.13 3.80 4.13 4.53 4.37 4.07 4.00 4.10 4.102 5.13 7.83 4.60 5.27 4.57 5.57 7.30 5.17 6.10 4.70 5.004 4.57 3.73 4.50 4.40 4.07 5.73 4.23 4.53 4.53 4.30 5.006 4.10 4.80 3.77 3.73 4.63 3.83 3.67 4.03 4.53 4.57 4.308 4.23 4.23 3.57 3.83 4.00 3.50 4.30 4.20 3.90 4.10 3.8310 4.13 4.23 4.10 3.93 4.10 3.80 4.57 4.00 3.87 3.73 3.80



3.3. OPTIMIZATION OF THE EEM ALGORITHM 83Table 3.12: Errors (%) for data set Wine (resp. 40, 60 and 80 epohs).
h

nh 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.04 46.41 8.54 2.28 2.30 2.47 2.33 2.64 2.14 2.56 2.056 34.92 2.61 2.44 2.84 2.42 2.59 2.59 2.28 2.28 1.868 29.30 2.28 2.19 2.25 2.36 2.19 2.14 2.22 2.16 2.4210 22.89 2.28 2.56 1.94 1.97 2.05 2.11 2.11 2.39 2.1612 17.89 2.28 2.50 2.36 2.39 2.78 2.30 2.64 2.00 2.2214 18.60 2.53 2.67 2.42 2.31 2.08 2.30 1.94 1.83 1.9716 17.75 2.45 2.36 2.33 2.22 1.94 2.33 2.42 1.91 2.024 6.77 2.16 2.95 2.28 2.42 2.50 2.05 2.45 2.47 2.896 2.25 2.64 2.28 2.39 2.39 2.22 2.39 2.36 2.31 2.538 3.79 2.33 2.42 2.19 2.44 2.89 2.64 1.88 2.78 2.1110 2.30 2.61 2.56 2.14 2.08 2.22 1.94 2.75 2.39 2.3612 2.81 2.39 2.61 2.36 2.56 2.30 2.42 2.45 2.16 2.1714 2.61 2.50 2.59 2.33 2.28 2.16 2.64 2.19 2.28 2.3916 2.56 2.36 2.30 2.28 2.22 2.45 2.22 2.44 2.61 2.284 2.30 2.47 2.53 2.47 2.81 2.17 2.81 2.78 3.01 3.066 2.92 2.64 2.64 2.81 2.56 2.33 2.59 1.88 2.36 2.848 2.67 2.42 2.61 2.64 2.42 2.44 2.84 2.67 2.50 2.6110 2.56 2.75 2.73 2.78 2.84 2.42 2.70 2.36 2.95 2.4412 2.39 2.64 2.59 2.47 2.61 2.25 2.78 2.87 2.39 2.0214 2.67 2.95 2.28 2.64 2.87 2.47 2.36 2.30 2.89 2.4216 2.39 2.59 2.64 2.89 2.31 2.42 2.75 2.53 2.87 2.70Table 3.13: Errors (%) for data set 2VowelsPB (resp. 200, 250 and 300 epohs).
h

nh 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.02 24.09 21.25 25.49 28.72 28.64 28.94 28.77 29.354 16.17 11.53 9.11 8.79 11.65 9.73 11.99 11.516 13.26 8.19 7.82 8.66 8.77 9.19 11.28 11.378 14.46 9.29 8.11 8.49 9.18 9.34 9.36 9.0510 14.71 8.88 8.51 8.85 8.35 9.70 9.61 8.3012 14.62 8.12 8.92 9.31 9.88 8.73 9.36 9.892 22.29 22.89 24.94 28.46 30.83 30.30 28.75 28.294 15.07 7.80 7.65 10.35 12.38 13.22 10.97 10.816 12.76 8.50 7.82 8.24 9.61 8.77 8.90 9.608 10.21 8.29 8.40 7.80 8.53 10.58 8.22 10.4310 11.65 7.76 7.64 7.58 8.21 9.08 9.89 10.1512 11.23 8.36 9.08 8.92 8.81 9.26 9.38 8.632 18.73 25.80 25.71 27.02 29.65 29.03 28.63 28.314 12.10 8.00 8.36 9.40 10.77 10.78 10.21 11.556 10.63 7.51 8.43 8.17 8.41 9.43 8.77 7.558 10.78 7.89 7.55 7.94 8.70 7.72 9.83 8.2610 10.68 8.39 8.08 8.05 9.76 8.31 9.37 8.5112 9.03 8.25 8.17 7.60 7.76 8.09 8.82 8.89



84 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMTable 3.14: Errors (%) for data set Olive (resp. 140, 200 and 260 epohs).
h

nh 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.010 6.65 6.53 6.34 6.30 6.03 6.15 6.05 6.27 5.92 6.10 5.9115 6.07 5.69 6.37 6.00 6.14 5.68 5.72 5.84 5.56 5.98 5.6020 5.92 6.11 5.94 5.99 5.68 5.70 5.75 5.74 5.76 5.74 5.7025 6.06 6.02 6.00 5.86 5.29 5.64 5.65 5.29 5.83 5.59 5.7830 5.81 5.86 5.73 5.74 5.58 5.93 5.70 5.85 5.38 5.88 5.6510 6.37 5.90 5.94 6.08 6.16 5.65 5.92 5.62 6.41 6.08 5.7415 5.89 5.46 5.48 5.70 5.77 5.37 5.71 5.40 5.57 5.39 5.5820 5.39 5.38 5.52 5.42 5.49 5.26 5.25 5.49 5.38 5.58 5.7425 5.60 5.84 5.50 5.31 5.04 5.47 5.45 5.36 5.19 5.34 5.4530 5.30 5.58 5.47 5.38 5.31 5.27 5.25 5.44 5.40 5.29 5.2810 6.12 6.23 6.18 6.46 5.90 6.23 6.36 5.90 6.10 6.13 6.3315 5.86 5.74 6.37 5.59 5.29 5.88 5.48 5.76 5.85 5.40 5.6020 5.70 5.69 5.29 5.54 5.74 5.96 5.95 5.71 5.79 5.66 5.4125 5.49 5.35 5.67 5.35 5.37 5.31 5.48 5.58 5.77 5.48 5.4030 6.08 5.86 5.45 5.42 5.46 5.46 5.31 5.69 5.28 5.80 5.39In Table 3.15 we present the values of h for the minimum lassi�ation errors("Best h" olumn) and the value of h representative 5 of the underlined smallestlassi�ation errors ("Suggested h" olumn). We present also the values proposedfor eah data set by formula 3.17 ("Formula 3.17" olumn) and formula 3.18("Formula 3.18" olumn). In both formulas the N values orrespond to thenumber of elements of the training set (50% of the number of elements of thedata set given in olumn "# samples").The experiments learly show that, for small values of h, the lassi�ationerrors are signi�antly large and, therefore, the use of formulas like (3.17), usedfor density estimation, are not appropriate for the EEM algorithm. Figure 3.12shows (rosses and open irles), the h values obtained in the experiments with alldata sets (exept for data set Olive). In this �gure we an easily see the relationbetween the h values of the proposed formula 3.18 and the values obtained inthe experiments. For eah data set the rosses orrespond to the values of the5This "suggested h", hs, was obtained by averaging the error results using the followingformula: hs =
∑

hi

ei

/
∑

1
ei

, where ei are the smallest lassi�ation errors (∼ 10, underlined foreah experiment) and hi the respetive h values.



3.3. OPTIMIZATION OF THE EEM ALGORITHM 85Table 3.15: Values of h for eah data set driven by the experiments and de�nedby formulas 3.17 and 3.18.Data sets Classes # samples Best h Suggested h Formula3.18 Formula3.17Ionosphere 2 351 4.6 3.9 2.67 0.85Sonar 2 208 3.4 3.7 3.47 0.92Wdb 2 569 1.4 1.7 2.10 0.78XOR-n 2 200 4.0 4.7 3.54 0.93Iris 3 150 4.0 3.6 5.00 1.05Wine 3 178 4.6 4.2 4.59 1.022VowelsPB 4 608 1.8 2.2 2.87 0.93XOR-n 4 200 5.2 5.0 5.00 1.07Olive 9 572 4.6 5.4 4.43 1.20"Suggested h" and the irles to the h values of the minimum lassi�ation error.Based on the experimental evidene, we onlude that the proposed for-mula 3.18 for the value of the smoothing parameter, h, of the entropy estimation,yields good results when ompared to existing formulas of h used for density es-timation. Also, the proposed formula, ontrary to the one proposed by Bowman,does not and annot depend on s, due to the iterative nature of the EEM-VLRalgorithm. We showed that it produes very good results using a set of exper-iments where the values proposed by our formula are muh loser to the bestones found empirially.3.3.3 The Bath Sequential AlgorithmThe fat that, in the EEM algorithm, the entropy is estimated using the prob-ability density funtion estimation with the Parzen window method implies theuse of all available error samples to estimate its value. This fat fores the useof the bath mode in the bak-propagation algorithm, limiting the use of the



86 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMsequential or stohasti mode whih would be, in some ases, more appropriate.Apart from the higher omplexity of the algorithm in bath mode, we knowthat this approah has some limitations over the sequential mode. This was thereason for us to try to ombine both modes when using entropi riteria. Tooverome the above mentioned limitation, we propose a new approah that om-bines these two modes (the bath and the sequential) trying to use their mutualadvantages. The proposed Bath-Sequential algorithm ombines the two meth-ods applied in the bak propagation learning algorithm: the sequential mode,also referened as on-line or stohasti mode, where the update is made for eahsample of the training set, and the bath mode, where the update is performedafter the presentation of all samples of the training set. A brief referene to thepossibility of ombining both bath and sequential modes when training neuralnetworks was made in [21℄.We said, in Chapter 2, that the sequential mode of weight updating leadsto a sample-by-sample stohasti searh in the weight spae implying that itbeomes less likely for the bak-propagation algorithm to be trapped in loalminima [80℄. However, we still need some samples to estimate the entropy, andthis limits the use of the sequential mode. One of the advantages of the bathmode is that the gradient vetor is estimated with more auray, guaranteeingthe onvergene to, at least, a loal minima.In order to make use of the advantages of both modes and also to speedup thealgorithm, we developed a bath-sequential algorithm onsisting on the splittingof the training set in several groups that are presented to the algorithm in asequential way. In eah group we apply the bath mode.Let Ts be the training set of a given data set and Tsj the subsets obtainedby randomly dividing Ts in several groups with an equal number of samples,suh as
|Ts| = n +

L
∑

j=1

|Tsj|, (3.19)where L is the number of subsets and n the remainder. This division is performed



3.3. OPTIMIZATION OF THE EEM ALGORITHM 87in eah epoh of the learning phase. Leaving, in eah epoh, some samples outof the learning proess (when n 6= 0) is not signi�ant beause those sampleswill most likely be inluded in the next epoh. The partition of the trainingset in subsets redues the probability of the algorithm getting trapped in loalminima sine it is performed in a random way. The subsets are sequentiallypresented to the learning algorithm, whih applies to eah one, in bath mode,the respetive bak-propagation and subsequent weight update. The pseudoode for the Error Entropy Minimization Bath-Sequential algorithm (EEM-BS)is presented in Table 3.16.Table 3.16: Pseudo-ode for the EEM-BS Algorithm.For k:=1 to number of epohsCreate L subsets of Ts.For j:=1 to LCompute the error entropy gradient of Tsj applying formula 3.11.Perform weight update.End ForEnd ForOne of the advantages in using the bath-sequential algorithm is the dereas-ing of the algorithm omplexity. The omplexity of the original EEM algorithm,due to formulas 3.10 and 3.11, is O(|Ts|2). We learly see that, for large trainingsets, the algorithm is highly time onsuming. With the EEM-BS algorithm theomplexity is proportional to:
L

( |Ts|
L

)2

. (3.20)Therefore, the omplexity ratio of both algorithms is:
|Ts|2

L( |Ts|
L )2

= L, (3.21)whih means that, in terms of omputational proessing time, we ahieve a redu-tion proportional to L. For a omplete experiment, similar to the one presentedin the next paragraph with the data set "Olive", we redued the proessing timefrom about 30 to 6 minutes in our mahine.



88 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMThe number of subsets, L, is determined by the size of the data set. If, in agiven problem, the training set has a large number of data samples, we an usea higher number of subsets than if we have a small training set. We reommendthe division of the training set in a number of subsets with a number of samplesnot less than 40, even though we sometimes got good results with less elements.In order to perform the experiments with the bath-sequential algorithm, wetried to use the EEM algorithm with adaptive learning rate (EEM-VLR). Letus remind that EEM-VLR is based on the use of a global variable learning rateduring the training phase, as a funtion of the error entropy value in onseutiveiterations. Sine in EEM-VLR we ompare HR2 of a ertain epoh with thesame value in the previous one, we annot ombine it with the bath-sequentialalgorithm beause, in eah epoh, we use di�erent sets of samples and, by thissimple fat, we would have di�erent values of HR2. To overome this limitation,and also with the goal of ahieving a faster onvergene, we implemented asimilar proess, also using variable learning rate, but this time, the variationof the learning rate is done for eah neural network weight by omparing therespetive gradient in onseutive iterations (EEM-BS(SA)). This approah wasalready used in bak-propagation with MSE [177℄. We also used, for the samepurpose of speeding up the onvergene, the ombination of the bath-sequentialalgorithm with the resilient bak-propagation [156℄, ahieving very good results(EEM-BS(RBP)). Examples of the training phase for the three di�erent methods,with the data set "Olive", are depited in Fig.3.14.Experiments In order to establish the validity of the proposed algorithm weperformed several experiments, omparing the results obtained with the EEM-BS algorithm with those obtained with the simple EEM-VLR algorithm. Weused the data sets Ionosphere, Olive, Wdb and Wine.In all experiments we used [I:nh:O℄ MLP's, where I is the number of inputneurons, nh is the number of neurons in the hidden layer and O is the number of
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Figure 3.14: Training Error urves for the EEM-BS and the two ombinations:EEM-BS(SA) and EEM-BS(RBP).output neurons. We applied the 2-fold ross validation method. The experimentsfor eah data set were performed varying the number of neurons in the hiddenlayer, the number of subsets used and the number of epohs. In Table 3.17 wepresent the results obtained with the EEM-BS algorithm with 4 and 8 subsets (5and 8 for the Wdb data set). Eah result is the mean error of 20 repetitions. InTable 3.18 we only present the best results for eah experiment with the EEM-BS algorithm and the omparison with the results obtained with the EEM-VLRalgorithm.The results presented in Table 3.17 show that the �nal errors, for eah dataset, do not present a signi�ant variation aording to the harateristis ofthe experiment (epohs, nh). Also, the errors obtained, in eah data set, withdi�erent number of subsets are very similar.The omparison of the results obtained with both algorithms (EEM-BS andEEM-VLR), presented in Table 3.18, show that they are similar and, in someases, the ones obtained by EEM-BS are better than those of EEM-VLR. Sinethe best results were obtained with di�erent neural network omplexities, wepresent in olumn Tpe the proessing time per epoh for eah algorithm. It islear that the omputational time an be redued by a onsiderable fator whenusing the EEM-BS algorithm.In this subsetion we saw that, the ombination of sequential and bath



90 CHAPTER 3. ERROR ENTROPY MINIMIZATION ALGORITHMmodes when using entropi riteria in the learning phase an pro�t from theadvantages of both methods. We show, using experiments, that this is a validapproah that an be used to speed-up the training phase, maintaining a goodperformane, both in ahieved error rate and omputational time.



3.3. OPTIMIZATION OF THE EEM ALGORITHM 91Table 3.17: Errors and standard deviations of the experiments performed withEEM-BS in data sets Ionosphere, Olive, Wdb and Wine, for di�erent valuesof nh and di�erent number of epohs and subsets (L).IonosphereL=4 L=8Epohs Epohs
nh 60 80 100 120 60 80 100 1204 12.81(1.08) 13.06(1.10) 12.49(1.52) 13.0(1.57) 12.40(0.82) 13.17(1.32) 12.29(1.16) 12.57(1.36)6 12.64(1.13) 12.56(0.99) 12.39(0.96) 12.64(1.07) 12.81(1.01) 12.59(1.10) 12.63(1.46) 12.59(1.25)8 13.14(1.30) 12.67(1.42) 12.27(1.23) 12.54(1.16) 12.52(1.03) 12.79(0.88) 12.00(1.09) 12.09(1.23)10 12.53(1.40) 12.36(0.91) 12.77(1.49) 12.94(1.26) 12.64(1.18) 12.66(1.27) 12.46(1.18) 12.89(1.01)12 12.40(1.24) 12.46(0.94) 12.67(1.46) 12.66(1.24) 13.00(1.12) 12.36(1.45) 13.09(1.42) 12.31(1.10)OliveL=4 L=8Epohs Epohs
nh 100 140 180 220 100 140 180 22010 5.73(0.70) 5.65(0.73) 5.71(0.76) 5.79(0.63) 6.42(0.61) 5.67(0.68) 5.33(0.52) 5.66(0.47)20 5.83(0.69) 5.24(0.49) 5.48(0.56) 5.42(0.67) 6.06(0.74) 5.81(0.88) 5.24(0.70) 5.55(0.70)30 5.65(0.75) 5.17(0.51) 5.38(0.56) 5.24(0.52) 6.11(0.67) 5.62(0.67) 5.45(0.87) 5.35(0.63)40 5.85(0.82) 5.48(0.49) 5.29(0.51) 5.57(0.57) 6.47(0.60) 5.85(0.73) 5.64(0.75) 5.54(0.69)WdbL=5 L=8Epohs Epohs
nh 40 60 80 100 40 60 80 1004 2.63(0.47) 2.47(0.49) 2.58(0.56) 2.54(0.51) 2.58(0.40) 2.41(0.42) 2.54(0.54) 2.48(0.49)6 2.66(0.70) 2.66(0.58) 2.60(0.45) 2.59(0.66) 2.54(0.53) 2.51(0.50) 2.47(0.55) 2.51(0.54)8 2.51(0.52) 2.56(0.49) 2.46(0.43) 2.54(0.47) 2.44(0.58) 2.46(0.52) 2.43(0.48) 2.69(0.57)10 2.52(0.41) 2.31(0.35) 2.52(0.42) 2.49(0.34) 2.35(0.48) 2.77(0.51) 2.46(0.37) 2.90(0.57)12 2.39(0.48) 2.39(0.40) 2.50(0.53) 2.64(0.62) 2.47(0.49) 2.61(0.45) 2.63(0.60) 2.67(0.55)WineL=4 L=8Epohs Epohs
nh 20 40 60 80 20 40 60 808 2.61(0.82) 2.22(0.81) 2.42(0.89) 2.33(0.88) 2.45(0.69) 2.0(0.85) 2.67(0.85) 2.67(1.25)10 2.36(0.99) 2.61(1.17) 2.59(0.92) 2.58(1.32) 2.59(0.84) 2.16(1.27) 2.28(0.15) 2.50(0.88)12 2.4(1.15) 2.36(1.15) 2.17(0.66) 2.19(0.73) 2.61(1.28) 2.05(0.86) 2.33(0.64) 1.94(0.76)14 2.28(0.64) 2.08(1.01) 2.56(0.69) 2.50(0.88) 2.50(0.82) 2.16(1.11) 2.58(0.99) 2.36(1.15)16 2.75(0.89) 2.03(0.53) 1.88(0.80) 2.25(0.91) 2.33(1.13) 2.42(1.15) 1.88(0.86) 2.16(1.05)
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Table 3.18: Summary of the best results of EEM-BS and omparison withEEM-VLR (Tpe: Time per epoh ×10−3 se.).IonosphereAlgorithm Error (Std) L n_h Epohs TpeEEM-VLR 12.06 (1.11) - 12 40 16.7EEM-BS 12.27 (1.23) 4 8 100 6.4EEM-BS 12.00 (1.09) 8 8 100 4.8OliveAlgorithm Error (Std) L n_h Epohs TpeEEM-VLR 5.04 (0.53) - 25 200 77.7EEM-BS 5.17 (0.51) 4 30 140 17.6EEM-BS 5.24 (0.70) 8 20 180 12.8WdbAlgorithm Error (Std) L n_h Epohs TpeEEM-VLR 2.33 (0.37) - 4 40 38.7EEM-BS 2.31 (0.35) 5 10 60 13.6EEM-BS 2.35 (0.48) 8 10 40 9.6WineAlgorithm Error (Std) L n_h Epohs TpeEEM-VLR 1.83 (0.83) - 14 40 5.8EEM-BS 1.88 (0.80) 4 16 60 3.2EEM-BS 1.88 (0.86) 8 16 60 2.5



Chapter 4
Clustering with Entropy
In the previous hapter we have applied entropi onepts to neural network su-pervised lassi�ation. In this hapter we will fous on unsupervised data las-si�ation, i.e. data lustering. The motivation for the new lustering algorithmpresented here ame from our goal to perform an entropi task deomposition formodular neural networks (this subjet will be disussed in the following hapter).Our new lustering algorithm [168℄ is a hierarhial algorithm, a stepwiselustering method, usually based on dissimilarity measures between objets orsets of objets from a given data set, but now based on a new entropi dissimilar-ity measure 1. The most ommon dissimilarity measures are distane measures.The derived proximity matries an be used to build graphs, whih provide thebasi struture for some lustering methods. We present in this hapter a newproximity matrix based on the new entropi dissimilarity measure and also anew lustering algorithm that builds layers of subgraphs based on this matrix,and uses them and a hierarhial agglomerative lustering tehnique to form thelusters. Our approah apitalizes on both a graph struture and a hierarhialonstrution. Moreover, by using entropy as a proximity measure we are able,1In our proposed algorithm we use Rényi's quadrati entropy beause of its simpliity;however, one ould use other entropi measures as well.93



94 CHAPTER 4. CLUSTERING WITH ENTROPYwith no assumption about the luster shapes, to apture the loal struture ofthe data, foring the lustering method to re�et this struture. We presentseveral experiments performed on arti�ial and real data sets that provide ev-idene of the superior performane of this new algorithm when ompared withompeting ones.Some examples of the appliation of entropy and information-theoreti on-epts in lustering are the minimum entropi lustering [121℄, entropi span-ning graphs lustering [81℄ or entropi subspae lustering [29℄. In some worksthe entropi onepts are usually related to measures similar to the Kullbak-Leibler divergene. In some reent works several authors used entropy as ameasure of proximity or interrelation between lusters. Examples of these algo-rithms are those proposed by Jenssen [97℄ or Gokay [63℄, that use a so-alledBetween-Cluster Entropy, and the one proposed by Lee [119℄, [120℄ that uses theWithin-Cluster Assoiation. Despite the good results in several data sets, thesealgorithms are heavily time onsuming and they start by seleting some randomseeds as �rst lusters whih may produe very di�erent results in the �nal lustersolution depending on the number of seeds hosen and their "position". If noneof the elements of a real luster is seleted as seed, those elements probably willbe inluded in other built lusters. These algorithms usually give good resultsfor ompat and well separated lusters.4.1 What is Clustering?Clustering deals with the proess of �nding possible di�erent groups in a givenset, based on similarities or di�erenes among their objets. This simple de�ni-tion does not onvey the rihness of suh a wide area of researh. What are thesimilarities and what are the di�erenes? How do the groups di�er? How anwe �nd them? These are examples of some basi questions, none with an uniqueanswer. There is a wide variety of tehniques to do lustering. Results are notunique and they always depend on the purpose of the lustering. The same data



4.1. WHAT IS CLUSTERING? 95an be lustered with di�erent aeptable solutions. Hierarhial lustering, forexample, gives several solutions depending on the tree level hosen for the �nalsolution.There are algorithms based on similarity or dissimilarity measures betweenthe objets of a set, like sequential and hierarhial algorithms; others, are basedon the priniple of funtion approximation, like fuzzy lustering or density basedalgorithms; yet others, are based on graph theory or ompetitive learning. Inthis paper we ombine hierarhial and graph approahes and present a new lus-tering algorithm based on a new proximity matrix that is built with an entropimeasure. With this measure, onnetions between objets are sensitive to theloal struture of the data, ahieving lusters that re�et that same struture.In the following subsetions we present some basi onepts and notationthat serve as the basis to present our algorithm and we make an overview ofsome of the most popular lustering algorithms.4.1.1 Proximity MeasuresLet X be the data set, X = {xi}, i = 1, 2, ..., N , where N is the number ofobjets and xi an l-dimensional vetor representing eah objet. We de�ne S,an s-lustering of X, as a partition of X into s subsets C1, C2, ..., Cs, obeyingthe onditions: Ci 6= ⊘, i = 1, ..., s; ∪s
i=1Ci = X and Ci ∩ Cj = ⊘, i 6= j, i, j =

1, ..., s. Eah vetor (point), given these onditions, belongs to a single subset(luster). Our proposed algorithm uses this so alled hard lustering. (Thereare algorithms, like those based on fuzzy theory, in whih a point has degreesof membership for eah luster.) Points belonging to the same luster have ahigher degree of similarity with eah other than with any other point of theother lusters. This degree of similarity is usually de�ned using similarity (ordissimilarity) measures.The most ommon dissimilarity measure between two real-valued vetors x



96 CHAPTER 4. CLUSTERING WITH ENTROPYand y, is the weighted lp metri,
dp(x,y) =

(

l
∑

i=1

wi|xi − yi|p
)

1
p

, (4.1)where xi and yi are the ith oordinates of x and y, i = 1, ..., l, and wi ≥ 0 isthe ith weight oe�ient. The unweighted (w = 1) lp metri is also known asMinkowski distane of order p (p ≥ 1). Examples of this distane are the well-known Eulidian distane, obtained by setting p = 2, the Manhattan distane,
p = 1, and the l∞ or Chebyshev distane.4.1.2 Overview of Clustering AlgorithmsProbably the most used lustering algorithms are the hierarhial, agglomerativealgorithms. They reate, by de�nition, a hierarhy of lusters from the dataset. Hierarhial lustering is widely used in biology, mediine, and also inomputer siene and engineering. (For an overview on lustering tehniquesand appliations see [20,93�95℄). Hierarhial agglomerative algorithms start byassigning eah point to a single luster and then, usually based on dissimilaritymeasures, proeed to merge small lusters into larger ones in a stepwise manner.The proess ends when all the points in the data set are members of a singleluster. The resulting hierarhial tree de�nes the lustering levels. Examples ofhierarhial lustering algorithms are CURE [68℄ and ROCK [69℄ developed bythe same researhers, AGNES [110℄, BIRCH [206℄, [207℄ and Chameleon [108℄.The merging phase of the agglomerative algorithms di�ers in the sense that,depending on the measures used to ompute the similarity or dissimilarity be-tween lusters, di�erent merge results an be obtained. The most ommon meth-ods to perform the merging phase are:

• Single Link Method: the dissimilarity between two lusters is measured bythe distane between the two losest vetors.
• Complete Link Method: the dissimilarity between two lusters is measuredby the distane between the two most distant vetors.
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• Centroid Method: the dissimilarity between two lusters is measured by thedistane between their entroids (usually the mean vetors).
• Ward's Method: two lusters are merged if the sum of all the distanesbetween the resulting entroid and the joined vetors is the smallest one.The Single Link method usually reates elongated lusters and the Com-plete Link usually results in more ompat lusters. The Centroid method atsin a midway basis, yielding lusters somewhere between the two previous ones.Ward's method is onsidered very e�etive in produing balaned lusters; how-ever, it has several problems dealing with outliers and elongated lusters. In [102℄one an �nd a probabilisti interpretation of these lassial agglomerative meth-ods.Another type of algorithms are the ones based on graphs and graph theory.A graph is de�ned as an ordered pair G = (V,E), where V = {vi}, i = 1, ..., Nis a set of verties and E is a set of edges onneting pairs of verties. An edgeonneting vi and vj is denoted by eij . One an have direted or undiretedgraphs depending on whether or not the order of vi and vj is important. Usingdireted graphs originates double edges between a pair of verties, one in eahdiretion. Unweighted graphs are those where there is no ost assoiated witheah edge. If there is a path in G where the �rst and last verties oinide thenthis path is alled a loop or irle. A subgraph G′ = (V ′, E′) of G is a graphwith V ′ ⊆ V and E′ ⊆ E, where edges of E′ onnets pairs of verties from V ′.A similarity graph is a graph based on the similarity matrix of a spei� dataset.Clustering algorithms based on graph theory are usually divisive algorithms,meaning that they start with a single highly onneted graph (that orrespondsto a single luster) that is then splited using onseutive uts. A ut in a graphorresponds to the removal of a set of edges that disonnets the graph. Aminimum ut (min-ut) is the removal of the smallest number of edges thatprodues a ut. The result of a ut in the graph auses the splitting of one



98 CHAPTER 4. CLUSTERING WITH ENTROPYluster into, at least, two lusters. An example of a min-ut lustering algorithman be found in [99℄. Clustering algorithms based on graph theory have existedsine the early 1970's. They use the high onnetivity in similarity graphs toperform lustering ( [130℄, [131℄). More reent works suh as [75℄, [76℄ and [196℄also perform lustering using highly onneted graphs and subsequent partitionsby edge utting to obtain subgraphs. Chameleon [108℄, mentioned earlier as ahierarhial agglomerative algorithm, also uses a graph-theoreti approah. Itstarts by onstruting a graph, based on k-nearest neighbors, then it performsthe partition of the graph into several lusters (using the hMetis [109℄ algorithm)suh that it minimizes the edge ut. After �nding initial lusters, it repeatedlymerges these small lusters, using relative luster interonnetivity and losenessmeasures.Graph utting is also used in spetral lustering, ommonly applied in imagesegmentation and, more reently, in web and doument lustering and bioinfor-matis. The rationale of spetral lustering is to use the speial properties of theeigenvetors of a Laplaian matrix as the basis to perform lustering. Fidler [52℄was one of the �rst to show the appliation of eigenvetors to graph partitioning.The Laplaian matrix is based on an a�nity matrix, A, built with a similaritymeasure. The most ommon similarity measure used in spetral lustering is
Aij = exp (−d2

ij/2σ2), where dij is the Eulidian distane between vetors xi and
xj and σ is a saling parameter. With matrix A, the Laplaian matrix L isomputed as L = D − A, where D is the diagonal matrix whose elements arethe sums of all row elements of A.There are several spetral lustering algorithms that di�er in the way theyuse the eigenvetors in order to perform lustering. Some researhers use theeigenvetors of the "normalized" Laplaian matrix [31℄ (or a similar one), inorder to perform the utting usually using the seond smallest eigenvetor [175℄,[103℄, [39℄. Others, use the highest eigenvetors as input to other lusteringalgorithm [141℄, [133℄. One of the advantages of this last approah is that, by



4.1. WHAT IS CLUSTERING? 99using more than one eigenvetor, enough information an be provided to obtainmore than two lusters as opposed to utting strategies where lustering must beperformed reursively to obtain more than two lusters. A omparison of severalspetral lustering algorithms an be found in [187℄.The pratial problems enountered with graph-utting algorithms are ba-sially related to the belief that the subgraphs produed by utting are alwaysrelated to real lusters. This assumption is frequently true with well separatedompat lusters; however, in data sets with, for example, elongated lusters,this may not our. Also, if we use weighted graphs, the hoie of the thresholdto perform graph partition an produe very di�erent lustering solutions.Other lustering algorithms use the existene of di�erent density regions ofthe data to perform lustering. One of the density based lustering algorithms,apart from the well-known DBSan [48℄, is the Mean Shift algorithm. MeanShift was introdued by Fukunaga [58℄, redisovered in [30℄ and also studied inmore detail by Comaniiu [32℄, [33℄, with appliations to image segmentation.The original algorithm, with a �at kernel, works this way: in eah iteration, foreah point P , the luster enter is obtained by repeatedly entering the kernel(originally entered in P ) by shifting it in the diretion of the mean of the setof points inside the same kernel. The proess is similar if we use a Gaussiankernel. The mean shift vetor is aligned with the loal gradient estimate andde�nes a path leading to a stationary point in the estimated density [33℄. Thisalgorithm seeks modes in the sample density estimation and so is onsidered tobe a gradient mapping algorithm [30℄. Mean Shift has some very good resultsin image segmentation and omputer vision appliations but, like other densitybased algorithms, it builds lusters with the assumption that eah of them isrelated to a mode of the density estimation. For problems like the one depited inFig. 4.1a, with lusters of di�erent densities very lose to eah other, this kind ofalgorithm usually has di�ulties in performing the right partition beause it �ndsonly one mode in the density funtion. (If we use a smaller smoothing parameter



100 CHAPTER 4. CLUSTERING WITH ENTROPYit will �nd several loal modes in the low density region). This behavior is alsoobservable in data sets like the double spiral data set depited in Fig. 4.10.
(a) The original data set. (b) The expeted luster-ing solution. () Density funtion.Figure 4.1: An example of a data set di�ult to luster using density basedlustering algorithms like Mean Shift.Another example of a lustering algorithm is the path-based pairwise luster-ing algorithm [53, 54℄. This lustering method also groups objets aording totheir onnetivity. It uses a pairwise lustering ost funtion with a dissimilar-ity measure that emphasizes onnetedness in feature spae to deal with lusterompatness. This simple approah gives good results with ompat lusters.To deal with strutured lusters a new objetive funtion, ontaining the sameproperties of the pairwise ost funtion, is used. This new objetive funtion isbased on the e�etive dissimilarity, the length of the minimal onneting pathbetween two objets, and is the basis for the path-based lustering. Some of theappliations of this lustering algorithm are edge detetion and texture imagesegmentation.4.2 The Clustering Algorithm ComponentsOne of the main onerns when we started searhing for an e�ient lusteringalgorithm was to �nd an extremely simple idea, based on very simple priniples,that didn't need omplex measures of intra- or inter-luster assoiation. Keepingthis in mind, we performed lustering tests involving several types of individuals



4.2. THE CLUSTERING ALGORITHM COMPONENTS 101(inluding hildren) in order to grasp the mental proess of data lustering. Theresults and analysis of these tests an be found in Appendix B. One of themost important onlusions from our tests is that human lustering exhibitssome balane between the importane given to loal (e.g., onnetedness) andglobal (e.g., struturing diretion) features of the data, a fat that we tried tore�et in our algorithm. The tests also provided majority hoies of lusteringsolutions against whih one an ompare the lustering algorithms. Some of theexperiments performed with these data sets are presented later.In the following we introdue two new lustering algorithm omponents: anew proximity matrix and a new lustering proess. We �rst present the newentropi dissimilarity measure and, based on that, the omputing proedure of alayered entropi proximity matrix; afterwards we present the LEGClust (LayeredEntropi subGraphs Clustering) algorithm.4.2.1 The Entropi Proximity MatrixGiven a set of vetors X = {x1,x2, ..,xN}, xi ∈ R
m, orresponding to a set ofobjets, eah element of the dissimilarity matrix A, A ∈ R

N×N , is omputedusing a dissimilarity measure Ai,j = d(xi,xj). Using this dissimilarity matrixone an build a proximity matrix, L, where eah ith line represents the data setpoints, eah jth olumn the proximity order (1st olumn=losest point ... lastolumn=farthest point) and eah element the point referene that, relative torow point i, is in the jth proximity position. An example of a proximity matrix,is shown in Table 4.5 (to be desribed in detail later on). The points referenedin the �rst olumn (L1) of the proximity matrix are those that have the smallestdissimilarity value relative to the orresponding row elements.Eah olumn of the proximity matrix is onsidered one layer of onnetions.We an use this proximity matrix to build subgraphs for eah layer, where eahedge is the onnetion between a point and the orresponding point of that layer.If we use a proximity matrix based on a dissimilarity matrix built with the



102 CHAPTER 4. CLUSTERING WITH ENTROPYEulidian distane to onnet eah point with its orresponding L1 point (�rstlayer) we get a subgraph similar to the one presented in Fig. 4.2b for the dataset of Fig. 4.2a. We all the lusters formed with this �rst layer onnetions theelementary lusters. Eah of these resulting elementary lusters (not onsideringdireted edges) is a Minimum Spanning Tree.

(a) Spiral data set.

(b) Connetions based on Eulidian dis-tane. () "Ideal" onnetions.Figure 4.2: Connetions of the �rst layer using Eulidian distane and the"ideal" onnetions for the spiral data set.As we an see from Fig. 4.2b, these onnetions have no relation with thestruture of the given data set. In Fig. 4.2 we present what one should expetto be the "ideal" onnetions. These ideal onnetions should, in our judgement,re�et the loal struturing diretion of the data. However, using lassial dis-



4.2. THE CLUSTERING ALGORITHM COMPONENTS 103tane measures, we are not able to ahieve this behavior. As we will see bellow,entropy will allow us to do it. The main idea behind the entropi dissimilaritymeasure is to make the onnetions follow the loal struture of the data set,where the meaning of "loal struture" will be lari�ed later. From now on wewill take "loal struture" or "loal struturing" in an intuitive ommon-sensebasis, as a designation of a prevailing diretion in the data. This onept an beapplied to data sets with any number of dimensions.Let us onsider the set of points depited in Fig. 4.3. These points are in asquare grid exept for points P and U . For simpliity we use a two-dimensionaldata set, but the analysis is valid for higher dimensions. Let us denote:
• K = {ki}, i = 1, 2, ..,M , the set of the M nearest neighbors of P ;
• dij , the di�erene vetor between points ki and kj , i, j = 1, 2, ..,M , i 6= j,that we will all the onneting vetor between those points;
• pi, the di�erene vetor between point P and eah of the M -nearest neigh-bors ki.We wish to �nd the onnetion between P and one of its neighbors thatbest re�ets the loal struture. Without making any omputation and just by"looking" at the points we an say, despite the fat that the shortest onnetionis p1, that the ideal andidates for "best onnetion" are those onneting Pwith Q or with R beause they are the ones that best re�et the struturingdiretion of the data points.Let us represent all dij onneting vetors translated to a ommon origin asshown in Fig. 4.4a. We will all this an M-neighborhood vetor �eld. An M-neighborhood vetor �eld an be interpreted as a probability density funtion inorrespondene with the two-dimensional histogram shown in Fig. 4.4b, wherein eah bin we plot the number of ourrenes of dij vetor ends. This histogramestimates the probability density funtion of dij onnetions. It an be inter-
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Figure 4.3: A simple example with the onsidered M-nearest neighbors of point
P , M = 9; the M-neighborhood of P orresponds to the dotted region.preted as a Parzen window estimate of the pdf using a retangular kernel. Themain elongation diretion of the pdf de�nes our "struturing diretion".

(a) (b)Figure 4.4: The M-neighborhood vetor �eld of point P (a) and the histogramrepresentation of the probability density funtion (b).The probability density funtion assoiated with point P , re�ets, in thisase, an horizontal M-neighborhood struture and, therefore, we expet to hoosean "ideal" onnetion for P that follows this horizontal diretion. Although thediretion is an important fator we should also onsider the size of the onne-tions and avoid the seletion of onnetions between points far apart. Takingthis into onsideration, we an also see that in terms of the probability densityfuntion, the small onneting vetors are the most probable ones.Now, sine we want to hoose a onnetion for point P based on rankingall possible onnetions, we have to ompare all the probability density fun-tions resulting from adding eah onnetion pi to the set of onnetion of the



4.2. THE CLUSTERING ALGORITHM COMPONENTS 105M-neighborhood vetor �eld. One of the measures that ompares probabilitydensity funtions is an entropi measure and we will use it to rank all the pos-sible onnetions pi. Basially, what we are going to do, is to rank onnetions
pi aording to the variation introdued by eah one in the probability densityfuntion. The onnetion that introdues less disorder into the system, thatleast inreases the entropy of the system, will be top ranked as the strongeronnetion, followed by the other M − 1 onnetions in dereasing order.Let D = {dij}, i, j = 1, 2, ..,M , i 6= j. Let H(D, pi) be the entropy assoiatedwith onnetion pi, the entropy of the set of all onnetions dij plus onnetion
pi, suh that

H(D, pi) = H({D} ∪ {pi}), i = 1, 2, ..,M. (4.2)This entropy is our dissimilarity measure. We ompute, for eah point, the
M possible entropies and build an entropi dissimilarity matrix and the orre-sponding entropi proximity matrix (examples are shown in Tables 4.4 and 4.5).The elements of the �rst olumn of the proximity matrix are those orrespondingto the points having the smallest entropi dissimilarity value (strongest entropionnetion), followed by those in the subsequent layers in dereasing order.We show, in Table 4.1, the dissimilarity and proximity values for point P andtheir neighbors depited in Fig. 4.3. We use Rényi's quadrati entropy omputedas explained in setion 2.2.2. The points of Fig. 4.3 are referened left to rightand top to bottom as 1 to 14.In Fig. 4.5 we show the �rst layer onnetions, where we an see the di�erenebetween using a dissimilarity matrix based on lassi distane measures suhas the Eulidian distane (Fig. 4.5a) and a dissimilarity matrix based on ourentropi measure (Fig. 4.5b).The onnetions derived by the �rst layer, when using the entropi measure,learly follow an horizontal line and, despite the fat that point k1 is the losestone to P in the Eulidian sense, the stronger onnetion for point P is the



106 CHAPTER 4. CLUSTERING WITH ENTROPYTable 4.1: Entropi dissimilarities and proximities relative to point P (10).(a) Entropi dissimilarities.Point 1 2 3 4 5 6 7 8 9 10 11 12 13 1410 8.83 8.73 8.72 8.73 8.83 8.66 8.58 8.58 8.66(b) Entropi proximities.LayersPoint L1 L2 L3 L4 L5 L6 L7 L8 L910 11 9 12 8 3 4 2 5 1
(a) (b)Figure 4.5: Di�erene on Elementary Clusters using a dissimilarity matrixbased on Eulidian distane (a) and on our Entropi measure (b).onnetion between P and R, as desired. This di�erent behavior an also beseen in the spiral data set depited in Fig. 4.6. The onnetions that produe theelementary, �rst layer, lusters are learly following the "struturing diretion"of the data. We obtain the same behavior for the onnetions of all the layersfavoring the union of those lusters that follow the struture of the data.The pseudo-ode to ompute the entropi proximity matrix is presented inTable 4.2.The proess just desribed is di�erent from the apparently similar proessof ranking the onnetions pi aording to the value of the probability densityfuntion derived from the M -neighborhood vetor �eld. In Fig. 4.7 we show the
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Figure 4.6: The �rst layer onnetions following the struture of the data setwhen using an entropi proximity matrix.Table 4.2: Pseudo-ode for omputing the entropi proximity matrix.For i = 1 to N (number of objets)For j = 1 to M (number of nearest neighbors)Compute H(D, pj) = H({D} ∪ {pj}).end jend iBuild the (N × M) entropi proximity matrix.estimated probability density funtion and the points orresponding to the pionnetions. We an see that, even in this simple example, a di�erene exists inthe ranking of the onnetions (�fth element).4.2.2 The Clustering ProessWe ould use the new entropi proximity matrix with an existing lusteringalgorithm to luster the data. However, the potentialities of the new proximitymatrix an be exploited with a new hierarhial agglomerative algorithm that wepropose and all LEGClust (Layered Entropi subGraph Clustering algorithm).The basi struture used in this new lustering algorithm is the unweightedsubgraph. More spei�ally, we use direted, maximally onneted, unweighted
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Figure 4.7: The probability density funtion of the M -neighborhood vetor�eld and the points orresponding to the pi onnetions. The labels indiatethe element number and the pdf value.subgraphs, built with the information provided by the entropi proximity matrix(EPM). Eah subgraph is built by onneting eah point with the orrespondingpoint of eah layer (olumn) of the EPM. An example of suh a subgraph wasalready shown in Fig. 4.6. The lusters are built hierarhially by joining togetherthe lusters that orrespond to the layer subgraphs.We start by presenting, in Table 4.3, the pseudo-ode of LEGClust Algo-rithm. Table 4.3: Pseudo-ode for the LEGClust Algorithm.Compute the entropi proximity matrix. (Table 4.2)Form the elementary lusters using the �rst layer.De�ne k - the minimum number of onnetions.While number-of-lusters> 1 doGo to next layer (L).Join eah luster with the one having the highest number of onnetionswith it (≥ k) in L.End WhileTo illustrate the proedure applied in the lustering proess we use a simple



4.2. THE CLUSTERING ALGORITHM COMPONENTS 109two dimensional data set example (Fig. 4.8a). This data set onsists of 16 pointsapparently onstituting 2 lusters with 10 and 6 points eah. Sine the numberof lusters in a data set is highly subjetive, the assumption that it has a spei�number of lusters is always a�eted by the knowledge about the problem.In Tables 4.4 and 4.5 we present the EPM built from the entropi dissimilaritymatrix. Table 4.4: The dissimilarity matrix for Fig. 4.8 data set.Points 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 - 5.64 - 6.36 5.66 6.32 - - - 5.77 - - - - - -2 6.00 - 6.03 6.26 6.40 - - - - 6.12 - - - - - -3 - 6.19 - 6.61 - - - - - 7.03 6.76 6.48 - - - -4 6.48 6.50 6.58 - - - - - - 6.36 6.47 - - - - -5 6.10 - - - - 6.24 - 6.16 6.09 6.18 - - - - - -6 - - - 6.05 6.21 - - 6.03 6.14 6.11 - - - - - -7 - - - - 5.61 6.06 - 5.67 5.28 6.84 - - - - - -8 - - - - 6.09 5.54 5.82 - 5.89 6.27 - - - - - -9 - - - - 5.78 5.98 5.79 6.03 - 5.99 - - - - - -10 6.06 5.98 - 6.05 6.00 5.98 - - - - - - - - - -11 - - - - - - - - - - - 3.74 4.41 4.73 3.93 3.8612 - - - - - - - - - - 3.86 - 3.88 4.36 4.60 3.9513 - - - - - - - - - - 4.39 3.78 - 3.79 4.75 3.8714 - - - - - - - - - - 4.71 4.36 3.80 - 3.93 3.8615 - - - - - - - - - - 3.85 4.81 5.01 3.82 - 3.7116 - - - - - - - - - - 4.19 4.18 4.18 4.18 4.18 -The EPM de�nes the onnetions between eah point and those points ineah layer: point 1 is onneted with point 2 in the �rst layer, with point 5 inthe seond layer and with point 10 in the third layer and so on (see Table 4.5).We start the proess by de�ning the elementary lusters. These lusters are



110 CHAPTER 4. CLUSTERING WITH ENTROPYTable 4.5: The proximity matrix for Fig. 4.8 data set.LayersPoints L1 L2 L3 L4 L51 2 5 10 6 42 1 3 10 4 53 2 4 11 1 104 10 3 6 2 115 9 1 8 10 66 8 4 10 9 57 9 5 8 6 108 6 7 9 5 109 5 7 10 6 810 6 2 5 4 111 12 16 15 13 1412 11 13 16 14 1513 12 14 16 11 1514 13 16 15 12 1115 16 14 11 12 1316 14 11 13 12 15built by onneting, with an oriented edge, eah point with the orrespondingpoint of the �rst layer (Fig. 4.8b). There are 4 elementary lusters in our simpleexample.In the seond step of the algorithm we onnet, with an oriented edge, eahpoint with the orresponding point of the seond layer (Fig. 4.8).In order to build the seond step lusters we apply a rule based on the numberof onnetions to join eah pair of lusters. We an use the simple rules of: a)joining eah luster with the ones having at least k onnetions with it; b) joiningeah luster with the one having the highest number of onnetions with it, not



4.2. THE CLUSTERING ALGORITHM COMPONENTS 111
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16(a) The data points.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16(b) First layer onnetions and resultingelementary lusters.
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

Cluster 2

Cluster 3

Cluster 1

Cluster 4() The 4 elementary lusters and theseond layer onnetions.Figure 4.8: The lustering proess in a simple two dimensional data set.less than a prede�ned k. In the performed experiments this seond rule provedto be more reliable, and the resulting lusters were usually "better" than usingthe �rst rule. The parameter k must be greater than 1 in order to avoid outliersand noise in the lusters. In our simple example we hose to join the lusterswith the maximum number of onnetions larger than 2 (k > 2). In the seondstep we form 3 lusters by joining luster 1 and 3 with 3 edges onneting them(note that the edge onneting points 3 and 4 is a double onnetion). Theproess is repeated and the algorithm stops when only one luster is present orwhen we get the same number of lusters in onseutive steps. The resultingnumber of lusters for this simple example was 4-3-2-2-2. As we an see, thenumber of lusters in steps 3 and 4 is the same (2); therefore, we onsider it tobe the aeptable number of lusters.



112 CHAPTER 4. CLUSTERING WITH ENTROPY4.2.3 Parameters involved in the lustering proess4.2.3.1 Number of nearest neighborsThe �rst parameter that one must hoose in LEGClust is the number of nearestneighbors (M). We do not have a spei� rule for this. However, one should nothoose a very small value beause a minimum number of steps in the algorithmis needed in order to guarantee reahing a solution. Choosing a relatively highvalue for M is also not a good alternative beause one loses information aboutthe loal struture, whih is the main fous of the algorithm.Based on the large amount of experiments performed with the LEGClustalgorithm on several data sets, we ame to a rule of thumb of using M values nothigher than 10% of the data set size. Note that, sine the entropy omputationfor the whole data set has omplexity O

(

N
(

(M
2

)

+ 1
)2
), the value of M has alarge in�uene on the omputational time. Hene, for large data sets a smaller

M is reommended, down to 2% of the data size. For image segmentation M anbe redued to less than 1% due to the nature of image harateristis (elementsare muh loser to eah other than in other lassi�ation problems).4.2.3.2 The smoothing parameterAs we said earlier, the h parameter is very important when omputing the en-tropy. In other works that also use the Rényi's quadrati entropy to performlustering it is assumed that the smoothing parameter is experimentally seletedand that it must be �ne tuned to ahieve aeptable results [63,97℄. A omparisonbetween formulas 2.60 and 2.61 was also performed in [96℄. In this work theyuse formula 2.60 to estimate the optimal one-dimensional kernel size for eahdimension of the data, and use the smallest value as the smoothing parameter.In Setion 3.3.2.1 we have proposed the formula hop = 25
√

m/N and haveshown experimentally that higher values of h than those given by formula 2.61produe better results in neural network lassi�ation using error entropy mini-



4.2. THE CLUSTERING ALGORITHM COMPONENTS 113mization as a ost funtion. Following the same approah, we propose a formulasimilar to formula 2.61, but with the introdution of the mean standard devia-tion:
hop = 2 s∗

(

4

(m + 2)N

)
1

m+4

, (4.3)where s∗ is the mean value of the sample standard deviations for eah dimension.All experiments of LEGClust were performed using formula 4.3.Although the value of the smoothing parameter is important, it is not ruialin order to obtain good results. As we inrease the h value, the kernel beomessmoother and the entropi proximity matrix beomes similar to the Eulidiandistane proximity matrix. Extremely small values of h will produe undesirablebehaviors beause the entropy will have high variability. Using h values in asmall interval, near the optimal value, does not a�et the �nal lustering results(e.g., we used in the spiral data set � Fig. 4.2 � values between 0.05 and 0.5without hanging the �nal result).4.2.3.3 Minimum number of onnetionsThe third parameter that must be hosen in the LEGClust algorithm, is the valueof k, the minimum number of onnetions to join lusters in onseutive steps ofthe algorithm. As mentioned earlier, one should not use k = 1 to avoid outliersand noise, espeially if they are loated between lusters. In our experiments weobtained good results using either k = 2 or k = 3. If the elementary lustershave a small number of points, we do not reommend higher values for k beauseit an ause the impossibility of joining lusters due to lak of a su�ient numberof onnetions among them.4.2.4 Algorithm OptimizationIn order to optimize the LEGClust algorithm, we have introdued some extrare�nements that an produe better �nal lustering solutions. One of them,



114 CHAPTER 4. CLUSTERING WITH ENTROPYrelated with the problem of outliers or noise, is the presene of "miro lusters".Miro lusters are lusters with a very small number of elements: in a small dataset these ould onsist of 2 or 3 elements. These miro lusters an appear if,for example, there is a very small number of elements in a isolated region (Fig.4.9a).What should we do with these miro lusters? There are several solutions:
• At eah step of the algorithm we an join eah miro luster to the lusterhaving the highest number of onnetions with it. This must be done withaution beause it an, eventually, lead to the union of two normal lus-ters into one single luster. However, in most ases, this approah produesgood results. An example of it is shown in Fig. 4.9, where we an see thedi�erene between a lustering with no miro lusters onsideration and onewhere the lusters with less than 3 elements, before the seond step of thealgorithm, are joined with other lusters. The number of lusters in eahstep of the lustering proess was, in the �rst ase (Fig. 4.9a): 18, 16, 12,6, 5, 5 and in the seond ase (Fig. 4.9b): 18, 13, 8, 3, 3.
• We an repeat the previous proess periodially along the lustering proess,inreasing the size of the aeptable miro lusters. This means that onean start by foring the lustering of miro lusters with, for instane, lessthan 3 elements at a �rst stage and then repeat the proess in posteriorstages inreasing, at eah step, the minimum number of elements in eahmiro luster. The only problem involved with this approah is the fat thatone may wrongly exlude real small lusters from the �nal lustering.
• The lustering proess is performed normally and, in the end, we an takeations in order to inlude the miro lusters in the formed lusters. Thisoption, however, has the disadvantage of the possible inlusion of outliersand noise in real lusters.
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5 clusters

k=3; No micro cluster detection.

Micro Clusters(a) Clustering with out miro luster detetion.
3 clusters

k=3; With micro cluster detection.

(b) Clustering with miro luster detetion.Figure 4.9: Di�erent solutions onsidering or not miro luster detetion.
• We just leave the �nal miro lusters as they are and onsider them as noiseor outliers.Other aspets that an be onsidered for inlusion in the algorithm in orderto try to ahieve better results are:
• Regarding the possibility of joining two lusters, we have presented in se-tion 4.2.2 two possible solutions based on a �xed number k of onnetionsbetween elements of two di�erent lusters. One of the options that an beinluded in the algorithm is to inrease the number k as we evolve in the



116 CHAPTER 4. CLUSTERING WITH ENTROPYlustering proess. This option is based on the fat that, as we evolve in thelustering proess, larger lusters will be formed and, therefore, the prob-ability of having a higher number of onnetions between lusters will bemuh higher.
• At eah step of the algorithm we only use the onnetions of the orrespond-ing layer to evaluate the possibility of joining two lusters. It may happenthat at a ertain step, the number of onnetions between two lusters maynot be su�ient to perform their union but, at a further step, when onsid-ering the onnetions of all the previous steps, we may reah the number kof neessary onnetions to joint the two lusters. One ould then use as anoptional feature the evaluation of the lustering proess at eah step basedon all previous onnetions.We have made some experiments with these two options but we didn't reaha onlusion about the type of data sets that bene�t from their use.Despite the fat that we do not use any kind of intra-luster or inter-lusterassoiation measure, we an easily introdue this onept in our algorithm butthis would highly inrease its omplexity, turning against our objetive of aextremely simple lustering algorithm. We also suspet that the introdutionof our new entropi dissimilarity measure in other hierarhial and graph-basedalgorithms may improve their results.4.3 ExperimentsWe have experimented the LEGClust algorithm in a large variety of applia-tions. We have performed experiments with the real data sets, UBIRIS, NCIMiroarray, 20NewsGroups, Duth Handwritten Numerals (DHN), Iris, Wdb,Wine, and Olive, some of them with a large number of features, and also withseveral arti�ial two-dimensional data sets. The arti�ial data sets were reated



4.3. EXPERIMENTS 117in order to better visualize and ontrol the lustering proess and some examplesare depited in Fig. 4.10. For the arti�ial data set problems the lustering so-lutions yielded by di�erent algorithms were ompared with the majority hoiesolutions obtained in the human lustering experiment mentioned in Setion 4.2and desribed in Appendix B. For real data sets the omparison was made withthe supervised lassi�ation of these data sets with the exeption of the UBIRISdata set where the objetive of the lustering tasks was the orret segmentationof the eye iris. In both ases � majority hoie or supervised lasses � we willdesignate these solutions as referene solutions or referene lusters.
(a) dataset7 (142). (b) dataset13 (113). () dataset15 (184).
(d) dataset22 (141). (e) dataset34 (217). (f) spiral (387).Figure 4.10: Some of the arti�ial data sets used in the experiments (in brak-ets the number of elements).We have ompared our algorithm with several well known lustering algo-rithms: Chameleon algorithm, two Spetral lustering algorithms, DBSan andMean Shift algorithms.The Chameleon lustering algorithm, inluded in Cluto [107℄, is a softwarepakage for lustering low and high-dimensional data sets. The parameters usedin the experiments, among the innumerous used by Chameleon are mentioned



118 CHAPTER 4. CLUSTERING WITH ENTROPYin the results. In fat, the number of parameters needed to tune this algorithmwas one of the main problems we enountered when we tried to use it in ourexperiments. To perform the experiments with Chameleon we followed the adviein [108℄ and in the manual for the Cluto software [106℄.For the experiments with the spetral lustering approahes we implementedthe algorithms (Spetral-Ng) and (Spetral-Shi) presented in [141℄ and [175℄ re-spetively. One of the di�ulties with both Spetral-(Ng/Shi) algorithms, isthe hoie of the saling parameter. Extremely small hanges in the salingparameter produed very di�erent lustering solutions. In these algorithm thenumber of lusters is the number of eigenvetors used to perform lustering. Thenumber of lusters is a parameter that is hosen by the user in both algorithms.We tried to make this hoie, in Spetral-Ng, an automati proedure by imple-menting the algorithm presented in [162℄; this, however, produed poor results.When making the hoie of the luster entroids in the k-means lustering usedin Spetral-Ng we performed a random initialization and 10 restarts (deemedaeptable by the authors).We tested the adaptive Mean Shift algorithm [33℄ in our arti�ial data setsand the results were very poor. In most of the ases the proposed lustering so-lution has a high number of modes and, onsequently, a high number of lusters.For problems having a small number of points, the estimated density funtionwill present, depending on the window size, either a unique mode if we use alarge window size, or several modes not orresponding to really existing lusters,if we use a small window size. An example of a lustering solution given bythis algorithm is presented in Fig. 4.11. As we an see, the number of modesis extremely high and, even if we optimize the result by joining modes that arevery lose to eah other, we still have a onsiderable number of modes. We thinkthat this algorithm probably works better with large data sets. An advantageof this algorithm is the fat that one does not have to speify the number oflusters as these will be driven by the data aording to the number of modes.
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(a) (b)Figure 4.11: An example of the number of modes (square points) obtainedwith the adaptive Mean Shift algorithm (onsidering 30 nearest neighbors)when applied to the spiral data set (a) and an estimated probability densityfuntions of the same data set (b).The DBSan algorithm is a density based algorithm that laims to �nd lus-ters of arbitrary shapes, but presents, basially, the same problems as the MeanShift algorithm. It is based in several density de�nitions between a point and itsneighbors. This algorithm only requires two input parameters, Eps and MinPts,but small hanges in their values, speially in Eps, produe very di�erent lus-tering solutions. For our experiments we used the implementation of DBSanavailable in [200℄.In the LEGClust algorithm the parameters involved are: the smoothing pa-rameter (h), related to the Parzen pdf estimation; the number of neighbors toonsider (M); and the number of onnetions to join lusters (k). For the pa-rameter h we used in all experiments the proposed formula 4.3. For the othertwo parameters we indiate in eah experiment the hosen values.Regarding the experiments with arti�ial data sets, depited in Fig. 4.10, wepresent in Figures 4.12 and 4.12 the results obtained with LEGClust.In Fig. 4.14 we present the solutions obtained with Chameleon algorithmthat di�er from those suggested by LEGClust.From the performed experiments, an important aspet notied when usingthe Chameleon algorithm was the di�erent solutions obtained for slightly di�er-
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(a) dataset7; M=14; k=3;43 33 17 10 5 3 3 3 2 2 1. (b) dataset13; M=10; k=3;11 7 5 4 3 3 3.

() dataset13; M=10; k=3;11 7 5 4 3 3 3. (d) dataset15; M=18; k=2;55 37 16 7 5 3 2 1.Figure 4.12: The lustering solutions suggested by LEGClust (part 1). Eahlabel shows: the data set name; the number of neighbors (M); the number ofonnetions to join lusters (k); the number of lusters found at eah step ofthe algorithm (underlined is the seleted step).ent parameter values. Data set 4.14 was the one where we had more di�ultiesin tuning the parameters involved in Chameleon algorithm. A partiular di�er-ene between the Chameleon and LEGClust results orresponds to the urioussolution given by Chameleon, and depited in Fig. 4.14b. When hoosing 3lusters as input parameter (n=3) this solution is the only solution that is notsuggested by the individuals that performed the tests referred in Setion 4.2.The solutions for this same problem, given by LEGClust, are shown in �gures4.12b and 4.12.The spetral lustering algorithms gave some good results for some data sets,
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(a) dataset20; M=15; k=3;41 28 18 10 4 2 2 1. (b) dataset22; M=14; k=2;45 26 12 8 5 3 2 2.

() dataset34; M=20; k=3;68 59 36 25 15 8 5 3 2 2. (d) spiral; M=30; k=2;116 72 28 14 5 3 2 1.Figure 4.13: The lustering solutions suggested by LEGClust (part 2). Eahlabel shows: the data set name; the number of neighbors (M); the number ofonnetions to join lusters (k); the number of lusters found at eah step ofthe algorithm (underlined is the seleted step).but they were unable to resolve some non-onvex data sets like the double spiralproblem (Figures 4.15 and 4.16).The DBSan algorithm learly fails in �nding the referene lusters in alldata sets (exept the one of Fig. 4.10a).Comparing the results given by all the algorithms applied to the arti�ialdata sets we learly see, as expeted, that the solutions obtained with the densitybased algorithms are worse than those obtained with any of the other algorithms.The best results were ahieved with the LEGClust and Chameleon algorithms.
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(a) dataset13; n=4; a=20; n=20. (b) dataset13; n=3; a=20; n=20.

() dataset34; n=2; a=50; n=6.Figure 4.14: Some lustering solutions suggested by Chameleon. The onsid-ered values nc, a and n are shown in eah label.



4.3. EXPERIMENTS 123

(a) dataset13; n=4; σ = 0.065. (b) dataset22; n=3; σ = 0.071.

() spiral; n=2; σ = 0.0272. (d) spiral; n=2; σ = 0.0275.Figure 4.15: Some lustering solutions suggested by Spetral-Ng. Eah labelshows: the data set name; the pre-established number of lusters; the σ value.
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(a) dataset13; n=4; σ = 0.3. (b) dataset15; n=5; σ = 0.3.

() dataset22; n=3; σ = 0.15. (d) spiral; n=2; σ = 0.13.Figure 4.16: Some lustering solutions suggested by Spetral-Shi. Eah labelshows: the data set name; the pre-established number of lusters; the σ value.



4.3. EXPERIMENTS 125We now present the performed experiments with LEGClust in real data setsand the omparative results obtained with the di�erent lustering algorithms.We start by presenting the results of the segmentation performed by LEG-Clust and Spetral-Ng in the images of UBIRIS data set sample. The resultsfor this image segmentation problem are depited in Fig. 4.17 (seond and thirdolumns). In all experiments with LEGClust we used the values M = 30 and
k = 3. For the experiments with Spetral-Ng we hose 5 as the number of �nallusters. We an see by the segmentations produed that both algorithms gaveaeptable results. However, one of the striking di�erenes is the way Spetrallustering splits eah eyelid in two by its enter region (the third image is a goodexample of this behavior) that is also observable if we hoose di�erent numbersof lusters.To test the sensitivity of our lustering algorithm to di�erent values of theparameters we have made some experiments with di�erent values of M and k,in the UBIRIS data set sample. An example is shown in Fig. 4.18. We an seethat, di�erent values of M and k do not a�et substantially the �nal result ofthe segmentation proess; the eye iris in all solutions is distintly obtained.Experiments with the DHN data set were performed with LEGClust andSpetral lustering and their results ompared. These results are presented inTable 4.7. ARI stands for Adjusted Rand Index, a measure for omparing resultsof di�erent lustering solutions when the labels are known [86℄. This index is animprovement of the Rand Index; it lies between 0 and 1 and the higher the ARIindex is the better is the lustering solution. The parameters for both Spetrallustering and LEGClust were tuned to give the best possible solutions. We ansee that, in this problem, LEGClust performs muh better than Spetral-Shiand with similar (but slightly better) results than Spetral-Ng. We also show inTable 4.7 some di�erent results for LEGClust obtained with di�erent hoies ofthe minimum number of onnetions (k) to join lusters. In these results we ansee that di�erent values of k produe results with small di�erenes in the ARI



126 CHAPTER 4. CLUSTERING WITH ENTROPY

Figure 4.17: Sample from UBIRIS data set (�rst olumn) and the results of theLEGClust (seond olumn) and Spetral (third olumn) lustering algorithms.The number of lusters for LEGClust was 8, 9, 12, 7, 5 and 8 respetively, with
M = 30 and k = 3.
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(a) k = 2 (b) M = 10 () M = 20Figure 4.18: Segmentation results for the fourth image (line 4) of Fig. 4.17using di�erent values of k or M .index.In Table 4.6 we show an example of the onfusion matrix obtained withLEGClust for an experiment with the DHN data set.In the experiments with the 20NewsGroups data set we have ompared theLEGClust algorithm with both Spetral lustering algorithms. The results ofthe experiments are shown in Table 4.7. We an see that the best results areobtained with the Spetral-Ng algorithm. However the results of LEGClust aremuh better when ompared with Spetral-Shi.In the experiments performed with the NCI Miroarray data set we also haveTable 4.6: A onfusion matrix of a lustering solution given by LEGClust forthe DHN data set. Classes
Clusters
176 1 0 1 0 3 9 0 169 31 0 0 0 0 0 0 0 19 07 2 1 3 14 178 6 16 1 1880 2 195 5 0 0 0 83 3 31 10 4 7 1 4 0 101 0 30 167 0 1 3 0 1 0 2 20 2 0 0 86 0 1 0 1 00 8 0 3 95 0 1 0 2 10 8 0 180 0 14 1 0 0 015 0 0 0 1 1 181 0 3 0



128 CHAPTER 4. CLUSTERING WITH ENTROPYompared the LEGClust and Spetral lustering algorithms. To perform theseexperiments we have hosen 3 lusters, following the example in [78℄, as the �nalnumber of lusters for both algorithms. The results are also shown in Table 4.7.Again the results produed by LEGClust were quite insensitive to the hoie ofparameter values.Table 4.7: The results and parameters used in the omparison of LEGClustand Spetral lustering in experiments with DHN, 20NewsGroups and NCIMiroarray data sets. LEGClustt Spetral-Ng Spetral-ShiDHN M k ARI n σ ARI n σ ARI30 10 0.628 10 12 0.573 10 10 0.28730 8 0.60830 12 0.57420NewsGroups 20 3 0.289 20 12 0.479 20 20 0.00620 2 0.287NCI Miroarray 4 2 0.148 3 80 0.177 3 10 0.1386 3 0.14810 3 0.148The results presented in Table 4.7 show that the LEGClust algorithm per-forms better than the Spetral-Shi algorithm in the three data sets and, om-pared with Spetral-Ng, it gives better results in the DHN data set and similarones in the NCI Miroarray.In the experiments with the data sets Iris, Olive, Wdb and Wine, we om-pared the lustering solutions given by LEGClust and Chameleon. The param-eters used for eah experiment and the results obtained with both algorithmsare shown in Table 4.8. Eah experiment with the Chameleon algorithm, followed



4.3. EXPERIMENTS 129the ommand: vluster dataset_name number_of_lusters=n -lmethod=graph-sim=dist -agglofrom=a -agglor=wslink -nnbrs=n given in [106℄. The �nalnumber of lusters is the same as the number of lasses. We an see that the re-sults with LEGClust are better than the ones obtained with Chameleon, exeptfor the data set Olive.Table 4.8: The results and parameters used in the omparison of LEGClustand Chameleon in experiments with 4 real data sets.Chameleon LEGClustData set a n ARI M k ARIIris 9 50 0.658 15 3 0.750Olive 40 40 0.733 25 3 0.616Wdb 40 25 0.410 20 3 0.574Wine 30 21 0.400 15 3 0.802Finally we also experimented our algorithm in two images from [54℄, usedto test textured image segmentation. We show in Fig. 4.19 the results obtainedand the omparison with those obtained by Fisher [54℄ with their Path-basedalgorithm. We are aware that our algorithm was not designed having in mind thespei� requirements of texture segmentation; as expeted, the results were notas good as those obtained in [54℄, but nevertheless LEGClust was still apableof deteting some of the strutured texture information.In this hapter we have presented a new proximity matrix, built with anew entropi dissimilarity measure, as input for lustering algorithms. We alsopresented a simple lustering proess that uses this new proximity matrix andperforms lustering by ombining a hierarhial approah with a graph tehnique.The new proximity matrix and the methodology implemented in the LEG-Clust algorithm allows taking into aount the loal struture of the data, rep-resented by the statistial distribution of the onnetions in a neighborhood of areferene point ahieving a good balane between struturing diretion and loal
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Figure 4.19: Segmentation results for textured images (left hand side) withFisher's path-based lustering (midle) and LEGClust (right). The parametersused in LEGCLust were M = 30 and k = 3 and the �nal number of lusterswas 3 (top) and 6 (bottom).onnetedness. In this way, LEGClust is able, for instane, to orretly follow astruturing diretion presented on the data, with sari�e of loal onnetedness(minimum distane), as human lustering often does.In the next hapter we will use LEGClust to perform modular neural networktask deomposition.



Chapter 5
MNN with Entropi TaskDeomposition
As we said in the beginning of the previous hapter, the proposed new lusteringalgorithm was developed beause we intended to perform modular neural net-work task deomposition based on entropi riteria. The purpose of this hapteris to present the experiments with modular neural networks with task deom-position performed with LEGClust (a small part of this hapter was presentedin [165℄). We will start the hapter with a brief introdution to modular neuralnetworks and the task deomposition proess followed by the presentation of theresults obtained in lassi�ation problems.The use of simple neural networks suh as multi-layer pereptrons has somedrawbaks: e.g. slow learning, weight oupling or the blak box e�et. Thesean be alleviated by using a modular neural network (MNN). A modular neuralnetwork is an ensemble of learning mahines. The idea behind this kind oflearning struture is the divide-and-onquer paradigm: the problem should bedivided into smaller subproblems that are solved by experts (modules) and their131



132 CHAPTER 5. MNN WITH ENTROPIC TASK DECOMPOSITIONpartial solutions should be integrated to produe a �nal solution. (Figure 5.1).
Data

Modules

Integration
Output

Figure 5.1: A modular neural network.Ensembles of learning mahines proved to give, in some ases, better resultsthan the single learners that produe them. The proofs are mainly empirial[15, 38℄ but there are some theoretial results [5, 6, 111℄ that also support thisassumption.The purpose here is to address the issue of using our entropi lusteringalgorithm (LEGClust) to perform the task deomposition in a modular neuralnetwork (MNN) approah, as opposite to the traditional methods. Task de-omposition is one of the strategies used to simplify the learning proess of anylearning system. In neural networks it basially onsists on the partition of theinput spae in several regions, this way deomposing the initial problem in dif-ferent subproblems. This is done based on the assumption that these regionspossess di�erent harateristis and so they should be learned by speializedneural networks. By posterior integration of the learning results, we are ableto hopefully ahieve better solutions for the initial problem. Generally, taskdeomposition an be obtained in three di�erent ways: expliit deomposition(the task is deomposed by the designer before training), lass deomposition(the deomposition is made based on the lasses of the problem) and automatideomposition. When automati deomposition is used, it an either be made



5.1. TASK DECOMPOSITION AND MNN STRUCTURE 133during the learning stage or it an be made before training the modules, usingan unsupervised or lustering algorithm. We use this last approah performingthe task deomposition with LEGClust.So, to use a MNN, three stages have to be onsidered:
• The task deomposition stage, where the problem is divided into smallerproblems, eah one to be delivered to one of the modules or expert networks.
• The training phase, where eah individual expert (module) is trained untilit learns to solve its partiular subproblem.
• The deision integration. This strategy is used to ombine the work ofthe experts and to produe a �nal network output. This an be done inseveral ways: using a gating network [90℄, making the modules vote [11℄ orthrough hierarhial integration (whih an also use voting and/or gatingnetworks) [91, 100℄. In this work we onsider the use of a gating network.This network an be onsidered as an additional expert that is trained toreognize the region of the input spae where eah of the experts have theirregion of expertise, de�ned in the task deomposition phase.After �nishing the learning proess, when a new pattern to be lassi�edis presented to the network, the individual experts ompute the lass it mightbelong, but the gate network selets only a partiular output that is given by theexpert it onsiders to be `ompetent' to solve the problem, taking into aountthe region of the input spae to whih the pattern belongs.5.1 Task deomposition and MNN StrutureAs we mentioned before, the task deomposition is done before training themodules, using a lustering algorithm. Previous works like [4,44,189℄ and [5,50℄already used this approah. There are several well known algorithms to perform



134 CHAPTER 5. MNN WITH ENTROPIC TASK DECOMPOSITIONlustering, being the most ommon ones those based on matrix theory and graphtheory. However, it is also known, and we have mentioned it on the previoushapter, that this kind of algorithms often have serious di�ulties in identifyingreal lusters. The algorithms based on matrix theory build lusters aording tosome distane measure produing usually globular lusters and the algorithmsbased on graph theory, usually divisive algorithms, present some di�ulties inthe proess of graph partitioning to obtain plausible lusters. In the followingwe propose the use of LEGClust to do the automati task deomposition.To better understand the need for a task deomposition proess, let us takea look at the arti�ial data set depited in Fig.5.2.

Figure 5.2: The partition of the input spae for a 3 lass problem.This is a 3 lass problem where the input spae is learly divided into 2 re-gions: one of the regions (upper right) ontains samples from 2 lasses (rossesand irles) and the other ontains samples from all 3 lasses. Note that there aretwo lasses with samples belonging to the 2 di�erent regions. This lassi�ationproblem, apparently trivial, will require a omplex MLP to obtain a satisfa-tory solution due to the fat that there are non onvex and disjoint lasses. Byhaving a lassi�er dediated to eah region we are able to transform this parti-ular problem into two simpler ones with eah lassi�er responsible to learn its



5.1. TASK DECOMPOSITION AND MNN STRUCTURE 135subproblem de�ned by its region of interest.A shemati view of the struture of our modular neural network and all thesteps involved in the training phase of the MNN is depited in Fig. 5.3.
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Figure 5.3: Shemati view of the struture and the training phase of theModular Neural Network.Eah module, inluding the gate, is an MLP.The proess starts with the partition of the input spae in C lusters. Thispartition is performed by the LEGCLust algorithm that reeives as input the



136 CHAPTER 5. MNN WITH ENTROPIC TASK DECOMPOSITIONfeatures matrix X and the target vetor T and produes as output the same
X and T and an additional vetor C representing the lusters labels for theelements of the data set.We have already mentioned, in the previous hapter, that the �nal numberof lusters in a lustering proess is very subjetive and is also in�uened by theproblem domain. In lassi�ation problems to be solved by a MNN approah,one must not work with a high number of �nal lusters beause the problemwould be extremely partitioned and, onsequently, the errors indued by the gatemodule, responsible to learn the division of the input spae, would probably bevery high. In fat, this, and the absene of natural lusters in a data set, arethe main obstales to use a MNN in a lassi�ation problem. If the data setdoes not possess natural lusters, by foring the division of the input spae in,at least, two lusters, the errors indued by the gate would be, probably, higherthan those produed by a single MLP. To better understand this problem let uslook at Fig.5.4.

Figure 5.4: The possible partition of the input spae in 2 lusters for this 2lass problem would produe worse results with a MNN than with a simpleMLP.This is a very simple problem for a simple MLP (the lasses are almost linearseparable). By dividing the input spae in two lusters, like the ones depited in



5.1. TASK DECOMPOSITION AND MNN STRUCTURE 137Fig. 5.5, obtained with the lustering proess, the errors produed by the gatemodule would be responsible for a worse solution than the possible one obtainedwith a single MLP.To illustrate the training phase, let us return to the example of Fig.5.2 andlet us suppose that the lustering proess divides the data set in two lusters,
C1 and C2, depited in Fig. 5.5.

C1

C2

Figure 5.5: The possible 2 lusters originated by the lustering proess appliedto the data set of Fig.5.2.The MNN for this problem will have two modules and the gate. The twomodules are responsible for learning eah of the subsets of the data de�ned byeah luster and the gate is responsible for learning the problem as if it was a2-lass problem like the one depited in Fig. 5.6.Eah module, M1 and M2, is trained with the subset of the training dataorresponding to eah luster, C1 and C2, respetively. The targets of thesesubsets are the original lass labels. Module M1 is trained with 3 lasses andmodule M2 with 2 lasses. So, we have a [2, nh, 3] MLP for module M1 and a
[2, nh, 2] MLP for module M2. The gate is trained with all the training set databut now the initial targets are substituted by the lusters labels (Fig. 5.6). Bydoing this, the gate network will learn to identify the data orresponding to eahinput region (luster). The training proess for eah module/gate is performed
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Figure 5.6: The gate is trained as if the initial problem is transformed in a2-lass problem like the one depited here.exatly the same way as in the MLP training. In addition we also use in eahmodule/gate our EEM algorithm as referened in Fig. 5.3.In the test phase, for eah new pattern that is presented to the MNN, thegate will determine whih module is going to lassify this new pattern, dependingon the output label. If the gate lassi�es the pattern as belonging to C1, theoutput of module M1 is the one that is hosen, and the similar for luster C2and module M2. Other strategies an be used, suh as the ombination of bothoutputs, to obtain a lassi�ation for eah pattern, but we didn't onsider thishypothesis in our work.5.2 ExperimentsWe have performed a onsiderable number of experiments with several data setsusing modular neural networks with task deomposition performed by di�er-ent lustering algorithms: one using k-means (K-MNN), another using SpetralClustering [141℄ and the last one using our entropi lustering (EC-MNN). Allthe neural networks used in the experiments, both the modules and the gatesof the MNN, were MLP's with one hidden-layer. The topologies of the MLPswere [a : nh : c], where a is the number of features, nh is the number of neurons



5.2. EXPERIMENTS 139in the hidden layer and c is the number of lasses treated by eah expert andthe number of lusters/experts for the gates. The neural networks were trainedwith the bak-propagation algorithm and early stopping. The experiments weremade using the 2-fold ross validation method. Eah module is trained with theinput data de�ned by the lustering algorithm (eah module learns with the datafrom eah luster). The gate network is trained with all the data labeled by theLEGClust algorithm.Regarding the lustering proesses, sine none of them produe automatiallythe number of lusters, these must be de�ned by the user. Taking into aountthe data sets used in the experiments, we only onsidered the possibilities of
2 and 3 lusters. Otherwise, the training set for eah module ould have aninsu�ient number of samples.We used in our experiments several real data sets: Breast Tissue, CTG,Diabetes, Olive, 2VowelsPB and Sonar, and also the arti�ial one depited inFig. 5.2 further designated as Arti�ialF5.2 ontaining 222 elements, 2 featuresand 3 lasses.In Table 5.1 we present the parameters of eah modular neural network forthe results presented in Table 5.2. For eah type of MNN, we show the numberof experts and, for eah of them, we present the number of hidden neurons andthe number of output neurons. The number of output neurons is de�ned by thenumber of lasses in eah luster. The presented strutures orrespond to thebest results in a large number of experiments with di�erent ombinations in thenumber of neurons in eah module and in the gate.In Table 5.3 we present the errors for the performed experiments with singleneural networks, SNN, (MLP's with one hidden layer). The number of neuronsin the hidden layer is shown in olumn nh. The results in Tables 5.2 and 5.3 arethe average and standard deviations for 20 repetitions of eah experiment.



140 CHAPTER 5. MNN WITH ENTROPIC TASK DECOMPOSITIONTable 5.1: Struture of the modular neural networks used in the experimentsorresponding to the results in Table 5.2. The last topology orresponds tothe gate struture.Data set Algorithm # Modules MNN StrutureArti�ialF5.2 EC-MNN 2 [2:20:3℄[2:12:2℄-[2:14:2℄K-MNN 2 [2:18:3℄[2:18:2℄-[2:18:2℄S-MNN 2 [2:18:3℄[2:18:2℄-[2:16:2℄Breast Tissue EC-MNN 2 [9:12:2℄[9:12:2℄-[9:3:2℄K-MNN 2 [9:10:2℄[9:12:2℄-[9:12:2℄S-MNN 2 [9:4:2℄[9:14:2℄-[9:6:2℄CTG EC-MNN 3 [22:20:6℄[22:18:2℄[22:26:2℄-[22:26:3℄K-MNN 3 [22:22:10℄[22:18:9℄[22:18:9℄-[22:26:3℄S-MNN 3 [22:18:10℄[22:22:10℄[22:22:10℄-[22:22:3℄Diabetes EC-MNN 3 [8:14:2℄[8:18:2℄[8:12:2℄-[8:16:3℄K-MNN 3 [8:10:2℄[8:12:2℄[8:10:2℄-[8:12:3℄S-MNN 2 [8:18:2℄[8:12:2℄-[8:10:3℄Olive EC-MNN 3 [8:10:4℄[8:4:3℄[8:12:2℄-[8:8:3℄K-MNN 3 [8:6:6℄[8:12:4℄[8:12:8℄-[8:12:3℄S-MNN 3 [8:12:4℄[8:12:4℄[8:4:3℄-[8:6:3℄2VowelsPB EC-MNN 2 [2:4:2℄[2:5:2℄-[2:2:2℄K-MNN 2 [2:6:2℄[2:6:2℄-[2:2:2℄S-MNN 2 [2:5:2℄[2:5:2℄-[2:2:2℄Sonar EC-MNN 2 [60:12:2℄[60:12:2℄-[60:12:2℄K-MNN 2 [60:12:2℄[60:12:2℄-[60:14:2℄S-MNN 2 [60:10:2℄[60:16:2℄-[60:16:2℄



5.3. RESULTS DISCUSSION 141Table 5.2: Errors and standard deviations for the performed experiments withMNN's with task deomposition made by K-means lustering (K-MNN), spe-tral lustering (S-MNN) and entropi (LEGClust) lustering (EC-MNN).Data set K-MNN S-MNN EC-MNNArti�ialF5.2 16.40 (2.40) 15.32 (3.55) 14.70 (3.22)Breast Tissue 58.95 (7.54) 33.53 (4.47) 32.79 (3.72)CTG 22.90 (0.86) 23.91 (2.91) 20.67 (2.38)Diabetes 24.45 (1.45) 23.96 (1.76) 23.89 (1.64)Olive 49.11 (2.89) 5.20 (1.11) 4.74 (0.89)2VowelsPB 7.23 (1.17) 7.28 (0.95) 7.25 (0.80)Sonar 16.14 (3.43) 23.69 (4.57) 18.57 (3.40)Table 5.3: Errors and standard deviations for the performed experiments withsingle neural networks (SNN).Data set SNN nhArti�ialF5.2 19.56 (3.95) 20Breast Tissue 32.75 (3.26) 22CTG 15.70 (0.60) 20Diabetes 23.90 (1.69) 15Olive 5.45 (0.62) 152VowelsPB 7.51 (0.37) 6Sonar 21.90 (2.80) 145.3 Results DisussionWe must start by reminding that the MNN approah, with its assoiated taskdeomposition, will only be e�etive, giving better results than single neuralnetworks, if the input spae possesses some divisive properties, i.e., if di�erentregions of the input spae exhibit lear data lusters as exempli�ed in Fig. 5.2.This is the main reason why we �rst foused our experiments on the omparison



142 CHAPTER 5. MNN WITH ENTROPIC TASK DECOMPOSITIONbetween three di�erent modular neural network task deomposition approahes,and seondly, we have ompared the results obtained by these MNN's and theones obtained with SNN's. So, what we have ompared in these �rst experimentsis the suitability of the entropi lustering to perform task deomposition whenompared with other methods, namely the k-means and spetral lusterings. Toahieve that omparison we have two hoies: to use, for eah data set, the sametopology for the di�erent modules of the MNN's for eah method or, for eahdata set, to try to �nd the best topology for eah module of the MNN for eahmethod. We think that the seond hypothesis is the most reasonable beauseone should expet that di�erent lustering proesses would produe di�erentlusters/regions by di�erently dividing the input spae. Therefore, the modulesmust possess di�erent strutures to learn eah of the subproblems, depending onthe luster omplexity.We an see that the average errors, in almost every performed experiment,were smaller for the EC-MNN than for the K-MNN and S-MNN. In some asesthe di�erenes in the performanes are very substantial, speially when om-paring EC-MNN and K-MNN, in the Breast Tissue and Olive data sets. The2VowelsPB is a data set with 2 well separated globular lusters, one ontaininglass 1 and 2 and the other lasses 3 and 4 (see Appendix A); that is the reasonfor the almost equal results for the three di�erent MNN's.We used the Wiloxon or ranksum non-parametri test to hek the statistisigni�ane of the di�erenes between similar results. The signi�ane level usedwas α = 0.05. The null hypothesis (medians are equal) an not be rejeted fordata set Diabetes between EC-MNN and K-MNN and for data sets Breast Tissue,Diabetes, Arti�ialF5.2, and Olive between EC-MNN and S-MNN. Despite theresults of the statisti tests, the means and standard deviations of the performedexperiments are smaller for the EC-MNN.When omparing the results of the performed experiments for both MNN andsingle MLP's (Tables 5.2 and 5.3), we an see that, for the data set Arti�ialF5.2



5.3. RESULTS DISCUSSION 143and 2VowelsPB we have a redution in the �nal error when using MNN's of anykind (in the 2VowelsPB data set the di�erene is very small, due to the natureof the problem). Comparing only the results of the SNN and the EC-MNN forthe remaining data sets, we an see that there are some data sets where the �nalerrors are onsiderable better for the EC-MNN. This is the ase of data setsOlive and Sonar. On the other hand, the results for data set CTG are betterwhen using a SNN. A possible explanation for this fat is that, as we mentionedbefore, the data set must possess some divisive properties to obtain some gainin using MNN's. We know that data set Olive probably possesses some divisiveharateristis beause olive oil samples ame from three di�erent regions of Italy(see Fig. A.3). For the remaining data sets, the results for EC-MNN and SNNare very similar.





Chapter 6Conlusions
Our work in data lassi�ation with entropi riteria is a ontribution bothin supervised lassi�ation with multi-layer pereptrons and in unsupervisedlassi�ation. In the following we will present a review of the ontributionsmade in this thesis.6.1 ContributionsFollowing previous works on the appliation of entropi riteria to regression andpredition, we have introdued and applied the error entropy minimization algo-rithm (EEM) for lassi�ation with MLP's. We have applied it in lassi�ationproblems with data sets with di�erent number of elements, features and lasses(balaned and unbalaned). The EEM algorithm proved to give better resultsthan the usual MSE in almost every performed experiment 1.In order to improve the learning proess with EEM we have implementedseveral optimization proedures. We �rst tried to use a variable smoothingparameter in the entropy gradient omputation with the purpose of a bettergradient estimation. This attempt didn't produe good results and we explainedthe reasons for it. For this reason, we used a �xed smoothing parameter and, in1Despite the fat that we do not presented here a omparison of the EEM algorithm withother well known lassi�ation methods suh as SVMs or even other ost funtions for MLPslike the ross-entropy, we have made several experiments omparing our algorithm with theselast two and the results also show that EEM is a valid alternative.145



146 CHAPTER 6. CONCLUSIONSa following phase, we performed experiments trying to obtain a formula for itbeause the known formulas for pdf estimation proved to be inadequate for ouralgorithm. After performing a large variety of experiments, we proposed a newformula for the EEM smoothing parameter. In another phase of our work, withthe purpose of ahieving a faster onvergene, we presented several algorithms foradaptive learning rate. With this optimization strategy, we were able to speed-up the learning proess with good �nal results. The last optimization proedurewas the bath-sequential algorithm. It was implemented in order to gain fromthe advantages of both methods and also to redue the omplexity of the EEMalgorithm. Sine the omputational omplexity of the entropy and its gradient isproportional to the number of elements of the training set, the algorithm beamevery time demanding for large data sets. With the bath-sequential algorithmwe were able to ahieve, in some ases, a redution on the omputational timeof 5:1.In the seond part of our researh, we have applied the entropy to lusteringproblems by developing a new lustering algorithm: LEGClust. This lusteringalgorithm is based on layered entropi subgraphs build based on a proximitymatrix obtained from a new entropi dissimilarity matrix. This dissimilaritymatrix is built with an entropi measure obtained by omputing, for all thedata set elements, the entropy of the di�erene vetors in a neighborhood ofevery element. With this entropi measure we were able to apture the loalstruture of the data allowing us to apply LEGClust to data sets with lustersof di�erent "shapes" without knowing them a priori. The experiments with theLEGClust algorithm in both arti�ial and real data sets have shown that: itahieves good results ompared with other lassial and sophistiated lusteringalgorithms; it is simple to use, sine it only needs to adjust 3 parameters andsimple guidelines for these adjustments were presented; its sensitivity to smallhanges of the parameter values is low; it often yields solutions that are majorityvoted by humans; and, it is a valid proposal for data sets with any number of



6.2. FUTURE WORK 147features.We have �nished this work by implementing a modular neural network (MNN)for lassi�ation using the LEGClust algorithm in its task deomposition phase.The use of a lustering algorithm is one of the possible strategies to perform taskdeomposition. The input spae of the problem is divided into several regions,with eah one being learned by a di�erent module (NN). We have omparedour lustering algorithm with the k-means and with the spetral lustering al-gorithms. The performed experiments have shown that the use of LEGClustto perform task deomposition is a valid approah, that there are several datasets that an bene�t from it, and that (generally) this approah will yield betterresults (smaller lassi�ation error) than those using k-means and spetral lus-tering algorithms. We have also ompared the results obtained with our MNNwith entropi task deomposition with the results obtained with a single neuralnetwork. They have shown that better results with suh a modular approahare only expeted when the lassi�ation problem possesses some divisive har-ateristis. Otherwise, by dividing the input spae in several regions, the errorintrodued by the deision integration of the di�erent modules may lead to aworse �nal lassi�ation error.6.2 Future WorkFirst of all, we must say that we think to have ahieved the proposed objetivesfor this work and that we have ful�lled our initial expetations. We are awarethat several other related researh topis are opened to researh and deserve afuture study. Among other possible subjets we mention the following ones:The use of entropi ost funtions in lassi�ation problems with MLPs mustbe the subjet of a further theoretial study. The nature of the errors, being theombination of two random variables of di�erent kinds � the output of the NN isa ontinuous variable and the de�ned targets are disrete variables � make thisissue a very omplex one in theoretial terms.



148 CHAPTER 6. CONCLUSIONSWe think that a supplemental e�ort should be made in order to try to use avariable smoothing parameter during the training phase.We have made several preliminary experiments omparing the results ob-tained by NNs with the EEM algorithm with other well known lassi�ers suh asSVMs or other ost funtions suh as ross-entropy. The results show that EEMis omparable, with slightly better results, to ross-entropy and, when omparedto SVMs, it gives better results in some data sets and worse results in others.Further experiments should be performed in order to try to establish the kind ofproblems where one may expet better results when using the EEM algorithm.This, is in fat, a metalearning researh task.We will try to inlude our entropi measure in other existing hierarhial andgraph based algorithms in order to ompare them with LEGClust algorithm. Bydoing this, we an also establish the importane of the entropi measure in thelustering proess.The implementation of a lustering proess using as input our entropi dis-similarity matrix with a di�erent approah than the one presented here, inde-pendent of the user hoie of parameters, and with a �xed number of lusters ifso desired, is one of the open researh perspetives.Further more, the possibility of ombining our entropi measure with mea-sures of intra- and inter-luster assoiation in order to try to obtain an evenbetter �nal result, in more spei� lustering problems like image segmentation,is also an open researh projet.



Appendix A
Data Sets
In this appendix we present information about the real data sets used in thiswork. Table A.1 ontains a summary of the harateristis of these data sets.In the following setions we present detailed information about eah one ofthe data sets. Table A.1: The real data sets used in this work.Data set # samples # features # lasses20NewsGroups 1000 565 202VowelsPB 608 2 4Breast Tissue 106 9 6CTG 2126 22 10DHN 2000 3 10Diabetes 768 8 2Ionosphere 351 33 2Iris 150 4 3NCI Miroarray 64 6830 12Olive 572 8 9Sonar 208 60 2UBIRIS image data setWdb 569 30 2Wine 178 13 3
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150 APPENDIX A. DATA SETS20NewsGroupsThe 20 Newsgroups data set an be found in the UCI repository of mahinelearning databases [22℄. It is a olletion of approximately 20000 newsgroupdouments, partitioned (nearly) evenly aross 20 di�erent newsgroups. The 20newsgroups olletion has beome a popular data set for experiments in textappliations of mahine learning tehniques, suh as text lassi�ation and textlustering.The data is organized into 20 di�erent newsgroups, eah orresponding to adi�erent topi. Some of the newsgroups are very losely related to eah other,while others are highly unrelated. Here is a list of the 20 newsgroups: alt.atheism;omp.graphis; omp.os.ms-windows.mis; omp.sys.ibm.p.hardware;omp.sys.ma.hardware; omp.windows.x; mis.forsale; re.autos; re.motoryles;re.sport.baseball; re.sport.hokey; si.rypt; si.eletronis; si.med; si.spae;so.religion.hristian; talk.politis.mis; talk.politis.guns; talk.politis.mideast;talk.religion.mis.The data set that we use in this work (20NewsGroups) is a random sub-sample of 1000 elements from the original data set (50 elements from eah group).This data set is a 20 lass text lassi�ation. We have prepared this data set bystemming words aording to the Porter Stemming Algorithm [148℄. The size ofthe orpus (the number of di�erent words presented in all the stemmed data set)de�nes the number of features. In this sub-sample we onsider only the wordsthat our at least 40 times, thus obtaining a orpus of 565 words.2VowelsPBThe data set 2VowelsPB, represented in Fig. A.1, an be found in [90℄. It is aspeaker independent, four-lass, vowel disrimination problem. The data onsistson the �rst and seond formants of the vowels [i℄, [I℄, [a℄ and [A℄ from 75 speakers(males, females and hildren). The data forms two pairs of overlapping lasses.
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Figure A.1: The 2VowelsPB data set.Vowels [i℄ and [I℄ form one overlapping pair of lasses and vowels [a℄ and [A℄ formthe other pair. The data set has 608 elements.Features: (all numeri-valued)1 First formant value.2 Seond formant value.Class Distribution: 152 elements per lass.Breast TissueThe Breast Tissue data set an be found in [128℄. It ontains 106 elements, 9features and 6 lasses.This data set onsists on eletrial impedane measurements performed onsamples of freshly exised tissue from the breast. The features, omputed fromthe impedane spetrum obtained by measurements taken at seven di�erent fre-quenies, are:



152 APPENDIX A. DATA SETS1 Impedivity (ohm) at zero frequeny.2 Phase angle at 500 KHz.3 High-frequeny slope of phase angle.4 Impedane distane between spetral ends.5 Area under spetrum.6 Area normalized by feature 4.7 Maximum of the spetrum.8 Distane between feature 1 and the real part of the maximum frequeny point.9 Length of the spetral urve.Class Distribution: Class # samplesCarinoma 21Fibro-adenoma 15Mastopathy 18Glandular 16Connetive 14Adipose 22CTGThe CTG data set an be found in [128℄. It ontains 2126 elements, 16 featuresand 10 lasses.This data set onsists on measurements of ardiotoographi (CTG) exam-inations. Cardiotoography is a popular diagnosti method in Obstetris, on-sisting on the analysis and interpretation of the foetal heart rate, the uterineontrations and the foetal movements. In this data set only the measures or-responding to the foetal heart rate signals and omputed by an automati systemare inluded. The lassi�ation of the signal patterns was performed by expertobstetriians (following a linial protool). From the original data set (22 fea-tures) we have disarded 6 features as suggested in [128℄.The used features are:



1531 Baseline value in b.p.m.2 Number of aelerations.3 Number of uterine ontrations.4 Perentage of time with abnormal short term variability.5 Mean value of short term variability.6 Perentage of time with abnormal long term variability.7 Mean value of long term variability.8 Number of light deelerations.9 Histogram width (histogram of heart rate in b.p.m.).10 Low freq. of the histogram.11 High freq. of the histogram.12 Number of histogram peaks.13 Histogram mean.14 Histogram median.15 Histogram variane.16 Histogram tendeny.We used in our experiments the features 2, 3 and 8 has is. However, sinethey represent a number of ourrenes in a ertain period of time (di�erent ineah pattern) one should transform these features and represent them as thenumber of ourrenes per unit of time (e.g. 10 min).Class Distribution:Class # samplesCalm sleep 384REM sleep 579Calm vigilane 53Ative vigilane 81Shift pattern 72Aelerative/deelerative pattern 332Deelerative pattern 252Largely deelerative pattern 107Flat-sinusoidal pattern 69Suspet pattern 197



154 APPENDIX A. DATA SETSDHNThe Duth Handwritten Numerals (DHN) data set an be found in [22℄. It on-sists on 2000 images of handwritten numerals ('0'�'9') extrated from a olletionof Duth utility maps [43℄. Eah image has 15×16 pixels. A sample of this dataset is depited in Fig. A.2.

Figure A.2: A sample of the DHN data set.Eah one of the 240 features (15 ×16) orresponds to the pixel gray intensitylevel.Class Distribution: 200 elements (handwritten numerals) in eah of the 10lasses.
DiabetesThe data set Diabetes (Pima Indians Diabetes) an be found in [22℄. It ontains768 elements, 8 features and 2 lasses.Features (all numeri-valued):



1551 Number of pregnanies.2 Plasma gluose onentration at 2 hours in an oral gluose tolerane test.3 Diastoli blood pressure (mm Hg).4 Trieps skin fold thikness (mm).5 2-Hour serum insulin (mu U/ml).6 Body mass index (weight in kg/(height in m)2).7 Diabetes pedigree funtion.8 Age (years).Class Distribution: (lass value 1 is interpreted as "tested positive for dia-betes") Class # samples0 5001 268IonosphereThe data set Ionosphere an be found in [22℄. It ontains 351 elements, 34features and 2 lasses.This is a radar data olleted by a system in Goose Bay, Labrador. Thissystem onsists on a phased array of 16 high-frequeny antennas. The targetswere free eletrons in the ionosphere. "Good" radar returns are those showingevidene of some type of struture in the ionosphere. "Bad" returns are thosethat do not. Reeived signals were proessed using an autoorrelation funtionwhose arguments are the time of a pulse and the pulse number. Sine there were17 pulse numbers for the Goose Bay system, with 2 attributes per pulse number,the number of features is 34. We have removed one of the features from theoriginal data set sine it has the same value (zero) for all elements.Class Distribution: (lass value 1 is interpreted as "good")



156 APPENDIX A. DATA SETSClass # samples0 1261 225IrisThe data set Iris an be found in [22℄. It ontains 150 elements, 4 features and3 lasses.This is the well known Fisher's Iris plants data set, perhaps the best knowndatabase to be found in the pattern reognition literature. Fisher's paper [56℄is a lassi in the �eld and is referened frequently to this day. The data setontains 3 lasses, where eah lass refers to a type of Iris plant(Iris Setosa, IrisVersiolour and Iris Virginia). One lass is linearly separable from the other 2;the latter are NOT linearly separable from eah other.Features: (all numeri-valued)1 Sepal length in m2 Sepal width in m3 Petal length in m4 Petal width in mClass Distribution: 50 elements in eah of 3 the lasses.NCI MiroarrayThe NCI Miroarray data set an be found in [140℄. It ontains 64 elements,eah desribed by 6830 features, and 12 lasses.Eah pattern element orresponds to a human tumor miroarray data. NCI isan example of a high-dimensional data set. The data are a 64×6830 matrix of realnumbers, eah representing an expression measurement for a gene (olumn) and asample (row). There are 12 di�erent tumor types, one with just 1 representativeand three with 2 representatives. It is also, therefore, a quite unbalaned data



157set.Class Distribution:
Class # samplesBreast 7CNS 5Colon 7K562 2Leukemia 6MCF7 2Melanoma 8NSCLC 9Ovarian 6Prostata 2Renal 9Unknown 1

OliveThe data set Olive an be found in [57℄. It ontains 572 elements, eah desribedby 8 features, and 9 lasses.This data set ontains data from eight fatty aid ontents of di�erent oliveoils from several regions of Italy.Figure A.3 represents the region of origin of the 9 di�erent kinds of olive oils.The lass distribution is as follows:



158 APPENDIX A. DATA SETSClass # samples1-North Apulia Calabria 252-Calabria 563-South Apulia 2064-Siily 365-Inner Sardinia 656-Coastal Sardinia 337-East Liguria 508-West Liguria 509-Umbria 51

Figure A.3: Italian olive oil samples by nine regions of origin.SonarThe data set Sonar an be found in [22℄. It ontains 208 patterns, eah desribedby 60 features, and 2 lasses.This data set, used by Gorman and Sejnowski in their study of the lassi�a-tion of sonar signals, ontains 208 patterns obtained by bouning sonar signalso� a metal ylinder (111) and roks (97) at various angles and under various on-ditions. Eah pattern orresponds to a vetor of 60 real numbers in the range 0.0



159to 1.0. Eah number represents the energy within a partiular frequeny band,integrated over a ertain period of time.UBIRISThe data set UBIRIS is desribed in [153℄ and an be downloaded fromhttp://iris.di.ubi.pt/. UBIRIS is a data set of eye images used for biometrireognition. In our experiments we used a sample of 12 graytone images with 256gray levels from this data set, some of whih are shown in Fig. A.4. Eah imagehas 60×45 pixels. Eah one of the 2700 features (60×45 pixels) orrespondsto the pixel gray intensity level. The biometri identi�ation proess starts bydeteting and isolating the iris with a segmentation algorithm.

Figure A.4: Sample from UBIRIS data set.WdbThe Wdb data set is the Wisonsin Breast Caner data set and an be foundin [22℄. It ontains 569 elements, eah desribed by 30 features, and 2 lasses.The two lasses, benign and malignant, are linearly separable using all 30 inputfeatures.These 30 features are obtained from 10 original features, omputed from adigitized image of a �ne needle aspirate (FNA) of a breast mass. These 10 fea-



160 APPENDIX A. DATA SETStures, that desribe harateristis of the ell nulei present in the image, areomputed for eah ell nuleus as follows:1 Radius (mean of distanes from enter to points on the perimeter).2 Texture (standard deviation of gray-sale values).3 Perimeter.4 Area.5 Smoothness (loal variation in radius lengths).6 Compatness (perimeter2 / area - 1.0).7 Conavity (severity of onave portions of the ontour).8 Conave points (number of onave portions of the ontour).9 Symmetry.10 Fratal dimension ("oastline approximation" - 1).The 30 features are obtained by omputing the mean, standard error, and"worst" or largest (mean of the three largest values) of the original 10 features,omputed for eah image.Class distribution: 357 benign, 212 malignant.
WineThis data set an be found in [22℄. It ontains 178 elements, eah desribed by13 features, and 3 lasses.The data is the result of a hemial analysis of wines grown in the same re-gion in Italy but derived from three di�erent ultivars. The analysis determinedthe quantities of 13 hemial onstituents found in eah of the three types ofwines. The attributes are:



1611 Alohol.2 Mali aid.3 Ash.4 Alkalinity of ash.5 Magnesium.6 Total phenols.7 Flavanoids.8 Non�avanoid phenols..9 Proanthoyanins.10 Color intensity.11 Hue.12 OD280/OD315 of diluted wines.13 Proline.The lass distribution is as follows:Class # samplesCultivar 1 59Cultivar 2 71Cultivar 3 48





Appendix BAn Assessment of HumanClustering on Bi-DimensionalDataB.1 IntrodutionData lustering performed by humans is haraterized by a high variability of so-lutions for non-trivial data sets. The omplexity and subjetivity involved in thelustering proess are highly related to the personal experiene and sometimesto knowledge about the problem domain. Clustering solutions may depend on avariety of features pereived in the data set. Figure B.1 illustrates some of thefeatures that seem to have a main role in guiding human solutions to lustering.They are as follows:
• Connetedness � This is probably the most basi feature leading us to joinpoints into lusters whenever onneting paths are pereived. This feature isvalued in the data set of Fig. B.1a when a human "sees" one luster insteadof two.
• Struturing diretion � This feature leads us to "see" the two arms ofthe ross in Fig. B.1b instead of only one luster. Humans are good atpereiving struturing diretions in data set graphs, independently of thosediretions being straight or urved lines.163
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• Struturing density � This feature leads us to "see" two lusters inFig. B.1 instead of only one.
• Struturing morphology � This feature leads us to "see" two lusters inFig. B.1d instead of only one, deiding di�erently of the similar Fig. B.1a.The reason is that, ontrary to Fig. B.1a, we now identify the bulging outwart of Fig. B.1d with a known form.

(a) (b)
() (d)Figure B.1: Clustering features: a) onnetedness; b) struturing diretion; )struturing density; d) struturing morphology.How muh in�uene have these features in the lustering proess? Howdo they interplay? In order to obtain some knowledge about these issues weperformed a variety of 2D data lustering experiments involving hildren andadults. The reason to involve hildren in lustering experiments is related tothe fat that we expeted in this way to disriminate (and haraterize) basilustering skills present in hildren from more advaned skills present in adults.Based on the experimental results we were able to extrat a few guidelines onthe human approah to data lustering.



B.2. CLUSTERS EXPERIMENTS 165B.2 Clusters ExperimentsWe performed tests involving several individuals (inluding hildren) in orderto grasp, based on the results, the mental proess of data lustering. We madethe experiment with 37 individuals, 17 of them hildren (6-7 years old), 15adults with no knowledge about lustering and 5 adults with some knowledge oflustering problems. The experiments were performed with the bi-dimensionaldata sets shown in Figure 2 and Figure 3. All data sets were manually drawnand we tried to reate di�erent situations using examples similar to those usuallyseen in lustering-related works and others reated by us.We have presented to the individuals all the data sets in the same order as inFigures B.2 and B.3, and they were asked to irle the possible groups of pointsin eah data set. We haven't given any other explanation or made any ommenton the way they should perform the experiment. We just said that in eah �guresome groups of points ould exist, or not, and if they thought they existed theyshould irle them with a line.A few similar data sets with small di�erenes among them were deliberatelyinluded in order to appreiate how small di�erenes in�uene the lusteringsolutions. Examples of suh data sets are the pairs (b-f) and (p-aa).
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(a) Data set "a". (b) Data set "b". () Data set "".
(d) Data set "d". (e) Data set "e". (f) Data set "f".
(g) Data set "g". (h) Data set "h". (i) Data set "i".
(j) Data set "j". (k) Data set "k". (l) Data set "l".
(m) Data set "m". (n) Data set "n". (o) Data set "o".Figure B.2: Data sets I.
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(a) Data set "p". (b) Data set "q". () Data set "r".
(d) Data set "s". (e) Data set "t". (f) Data set "u".
(g) Data set "v". (h) Data set "w". (i) Data set "x".
(j) Data set "y". (k) Data set "z". (l) Data set "aa".

(m) Data set "bb". (n) Data set "". (o) Data set "dd".Figure B.3: Data sets II.



168 APPENDIX B. AN ASSESSMENT OF HUMAN CLUSTERING ONBI-DIMENSIONAL DATAB.3 ResultsB.3.1 Global ViewIn this setion, we present the results of the experiments in a global perspetive.The lustering solutions proposed by the adults and hildren are summarizedin Table B.1. In the labelling of the solutions, we used the label "Others" todesignate a group of various solutions di�erent from the most ourring ones,labelled with numerals.A glane at Table B.1 immediately shows that the solutions proposed by theadults are more onsistent, exhibiting fewer solutions for eah data set than theones proposed by the hildren (6-7 years). Detailed observation of the hildrensolutions revealed that a large perentage of hildren build lusters based on asmall number of points. It seems that they fous on more loal regions givingpartiular attention to small groups. An example of suh behavior is shown inFig. B.4.During the labelling proess we only onsidered "well-grown" lusters pro-posed in the solution, disregarding very small lusters (up to 2 points). Thisoften happened with solutions proposed by hildren. An example of this situa-tion is the one depited in Fig. B.4a. In this ase, we onsidered the proposed3-luster solution like the one shown in Fig. B.20b.B.3.2 Detailed ViewIn this setion, we present a detailed view of the results together with statistialassessment and some omments.In order to understand in detail the lustering proess, we have divided thedata sets into several types. Type A: data sets with well-separated lusters;Type B: data sets with di�erent point densities; Type C: data sets with rossinglusters; Type D: data sets with nested lusters; Type F: data sets with spiral-shaped lusters; Type E: other data sets.In the next subsetions, we take a loser view to eah group of data sets and



B.3. RESULTS 169Table B.1: Experimental results with adults and hildren. Column "others"refer to several isolated solutions.Adults ChildrenOptions OptionsData set 1 2 3 4 Others 1 2 3 4 Othersa 19 1 14 1 2b 20 12 5 17 2 1 13 1 3d 9 9 1 4 10 3e 19 1 14 3f 15 5 2 13 2g 13 6 1 6 7 3h 20 14 2i 16 3 1 14 2j 19 1 9 7k 2 4 4 5 5 1 4 1 10l 10 5 5 2 6 9m 6 4 6 4 9 1 1 6n 14 6 5 10o 5 11 4 5 3 8p 12 7 1 10 3 3q 20 13 3r 14 6 9 7s 4 14 2 4 12t 19 1 12 4u 10 7 3 9 2 5v 19 1 12 4w 9 5 5 1 2 2 9 1x 8 6 6 3 3 9 1y 16 3 1 8 3 5z 16 4 10 6aa 11 8 1 8 2 5bb 16 4 5 6 5 10 8 2 1 11 4dd 17 3 9 3 4
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(a) Example of a lustering solution pro-posed for data set "g". (b) Example of a lustering solution pro-posed for data set "v".Figure B.4: Children usually onsider the existene of small lusters.make some omments about the proposed solutions. We also present analysisof the lustering results with the following statistial tests: χ2 test for goodnessof �t to a postulated distribution; χ2 test for independene between the Agevariable (two ategories: adults and hildren) and Solution variable (ategoriesto be presented in the subsetions). The independene test is omplementedwith Cramer's V measure of assoiation for nominal variables. The level ofsigni�ane of the tests was set at 5%. The usual onditions of validity of the χ2tests were taken into onsideration: for one degree of freedom no expeted valuebelow 5; for more than one degree of freedom no expeted value below 1 and nomore than 20% of the expeted values below 5. When these onditions were notmet the tests were not applied.B.3.2.1 Type A: Data sets with well-separated lustersIn this subsetion, we analyze the group of data sets with well-separated lusters.This group is onstituted by the set of data sets a, b, , d, e, h, i, q, t, v.For these data sets there is basially a unique solution shown in Fig. B.5proposed by a large majority of adults and hildren. Connetedness and some-times struturing diretion (data sets b,  and d) are the main features valuedin this unique lustering solution. The results for these data sets are shown in



B.3. RESULTS 171Table B.2.Table B.2: Experimental results with adults and hildren for well-separatedlusters. Adults ChildrenSolutions 1 2 Others 1 2 Othersa 19 1 14 1 2b 20 12 5 17 2 1 13 1 3d 18 1 14 3e 19 1 14 3h 20 14 2i 16 3 1 14 2q 20 13 3t 19 1 12 4v 19 1 12 4
The χ2 test for independene was performed for a Solution variable with twoategories: major solutions; minor solutions. Thus, the 2×2 Table B.3 was used.Table B.3: Major and minor solutions for independene test.Adults ChildrenMajor solutions 187 132Minor solutions 13 33
As expeted, the independene hypothesis was rejeted with p≈0. TheCramer V of the assoiation is low (V=0.2).
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(a) a1. (b) b1. () 1.
(d) d1. (e) e1. (f) h1.
(g) i1. (h) q1. (i) t1.

(j) v1.Figure B.5: The solutions proposed for data sets a, b, , e, h, i, q, t and v.B.3.2.2 Type B: Data sets with di�erent point densitiesIn this subsetion we analyze the data sets exhibiting lusters with di�erent pointdensities. This group is onstituted by the set of data sets k, n, o, r, bb, . For



B.3. RESULTS 173data set "n" there is basially a unique proposed solution, shown in Fig. B.6.

Figure B.6: The solution proposed for data set "n".The other Type B data sets are disussed in the following paragraphs.Data set "k" This data set was probably the one with the largest number ofdi�erent proposed solutions (see Fig.B.7). Apart from the 4 onsidered solutions(k1 to k4) the adults proposed 5 more di�erent solutions. The reasons for thisvariability an be attributed to the existene of di�erent density regions and thepeuliar struture of the data.Solution "k4" is the most signi�ant for adults and solution "k2" for hildrenand adults. We think that solution "k3" was suggested by adults based on thesymmetry of the data set. We an see that solution "k2" gives more importaneto the global struture and that solution "k4" gives relevane to the loal stru-ture of the data. Therefore, this data set suggests that hildren do not value thedensity feature to the point of sari�ing loal onnetedness.The χ2 test for goodness of �t led us to aept the uniformity hypothesis(equiprobability of the solutions) for the adults (p=0.66). The χ2 test for inde-pendene, for a Solution variable with two ategories ("regular lusters", "otherlusters"≡"non-regular lusters"), led us to rejet the independene hypothesis(p=0.05). The Cramer V is moderate (V=0.38). The rejetion of the indepen-dene hypothesis is related to the fat that there is a regular vs. non-regular
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(a) k. (b) k1. () k2.

(d) k3. (e) k4.k1 k2 k3 k4 Oth.Adults 2 4 4 5 5Children 1 4 1 10Figure B.7: The solutions proposed for data set "k".balane for hildren whih is the opposite for adults.Data set "o" For the data set "o" the solution "o2" was proposed by themajority of the adults (see Fig.B.8).However, the χ2 test for goodness of �t led us to aept the uniformityhypothesis for the adults (p=0.13) and for the hildren (p=0.26). Therefore, thebehaviour of adults and hildren was quite similar in this ase. The χ2 test forindependene, for a Solution variable with the three ategories as above, led usto rejet the independene hypothesis (p=0.056). The Cramer V is moderate(V=0.39). These �ndings further support the idea of idential behaviour ofadults and hildren when onnetedness prevails over slight di�erenes of point
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(a) o. (b) o1. () o2.o1 o2 Oth.Adults 5 11 4Children 5 3 8Figure B.8: The solutions proposed for data set "o".density.Data set "r" This data set was produed in order to try to pereive the in�u-ene of a high density region situated inside a low density region. The performedtests indiate that this high density region is onsidered by the majority of theindividuals, both adults (70%) and hildren (56%), as a separate luster.The χ2 test for goodness of �t led us to rejet the uniformity hypothesis forthe adults (p=0.05) and aept it for the hildren (p=0.6) for the "regular"-"non-regular" ategories.Data set "bb" The results show that solution "bb1" was overwhelminglyhosen by the adults. For the hildren the two solutions "bb1" and "bb2" arealmost equally suggested, on�rming what we noted previously: hildren are lessinlined to sari�e onnetedness to point density di�erenes.The χ2 test for goodness of �t rejets the uniformity hypothesis for theadults and aepts it for the hildren (p=0.94), on�rming the di�erent behaviourof hildren and adults. The χ2 test for independene, for a Solution variable
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(a) r. (b) r1. () r2.r1 r2 Oth.Adults 14 6Children 9 7Figure B.9: The solutions proposed for data set "r".

(a) bb. (b) bb1. () bb2.bb1 bb2 Oth.Adults 16 4Children 5 6 5Figure B.10: The solutions proposed for data set "bb".with the three ategories as above, led us to rejet the independene hypothesis(p=0.004). The Cramer V is high (V=0.594). This an be attributed to the lakof "Others" in the adult solutions.



B.3. RESULTS 177Data set "" We prepared this data set with the aim of omparing it withdata set "r". We have inluded here a similar region to the one appearing inthe data set "r". We were expeting similar solutions in the similar regions. Weindeed obtained adult results for this data set very similar to the results for dataset "r". For the similar regions, the proposed solutions were also similar. Inthe hildren results, this did not happen. Children only onsidered the existeneof the two most evident lusters (solution "2"). It seems that many adultswere able to deompose the data set on several levels of lusters (something likehierarhial lustering). First, by mentally onstruting 2 lusters and seondly,by separating one of them in 2 lusters. Children, on the ontrary, tend to valuethe most prominent feature: onnetedness. We think that only a hierarhialmental proess is able to justify the di�erenes between adults and hildren inthis data set.
(a) . (b) 1. () 2.1 2 Oth.Adults 10 8 2Children 1 11 4Figure B.11: The solutions proposed for data set "".Disregarding solution "Others", the χ2 test for goodness of �t aepts theuniformity hypothesis for the adults (p=0.64). The χ2 test for independene,for a Solution variable with the three ategories as above, led us to rejet the



178 APPENDIX B. AN ASSESSMENT OF HUMAN CLUSTERING ONBI-DIMENSIONAL DATAindependene hypothesis (p=0.017). The Cramer V is high (V=0.476).B.3.2.3 Type C: Data sets with rossing lustersIn this subsetion, we analyze the group of data sets with rossing lusters. Thisgroup is onstituted by the set of data sets l, m, s. In the following subsetions,we present and omment the di�erent proposed solutions for these data sets.Data set "l" In this data set the tests made on adults show that the preferredsolution is the one that onsiders the 2 arms of the ross.
(a) l. (b) l1. () l2.l1 l2 Oth.Adults 16 5 5Children 2 6 9Figure B.12: The solutions proposed for data set "l".Children prefer to onsider the ross as a single luster. Among the othersolutions proposed by hildren, there were a ouple of them onsidering thedivision of the ross in 4 lusters, one for eah branh. These results suggestthat adults are able to trade onnetedness by struturing diretion, a featurenot taken into aount by hildren.The χ2 test for goodness of �t aepts the uniformity hypothesis for theadults (p=0.33) and rejets it for the hildren (p=0.018). The χ2 test for inde-



B.3. RESULTS 179pendene, for a Solution variable with the three ategories as above, lead us torejet the independene hypothesis (p=0.04). The Cramer V is high (V=0.415).These results support the di�erent and almost opposite behaviour of adults andhildren.Data set "m" This data set was the one where there was more relutane inlustering the data in more than one luster. Adults were divided between theexistene of only one luster and the existene of several lusters.
(a) m. (b) m1. () m2.

(d) m3.m1 m2 m3 Oth.Adults 6 4 6 4Children 9 1 1 6Figure B.13: The solutions proposed for data set "m".Among all the solutions, proposed by adults, the most signi�ative was theone that onsidered the existene of 5 lusters. This solution for data set "m"is very urious when omparing with the solutions proposed for data set "l". In



180 APPENDIX B. AN ASSESSMENT OF HUMAN CLUSTERING ONBI-DIMENSIONAL DATAthe latter, adults have not onsidered the hypothesis of dividing the data set in4 lusters, one for eah branh of the ross; however, in data set "m", maybein�uened by the existene of a branh with no orrespondene in the otherside of the star, adults have deided to onsider eah branh as a single luster.Children onsider this to be a single luster problem, as they do with data set "l".The same omment made previously on onnetedness and struturing diretionapplies here.The χ2 test for goodness of �t aepts the uniformity hypothesis for theadults (0.64) and rejets it for the hildren (p≈0). χ2 test for independene,for a Solution variable with two ategories - "regular lusters" and "non-regularlusters" -, led us to aept the independene hypothesis (p=0.3). The CramerV is low (V=0.17).Data set "s" In this data set, almost all adults onsidered the existene of2 annular lusters as shown in Figure 14, however hildren were unable to dothe same. We ould see on the solutions proposed by the hildren that, in someases, they have tried to represent the two lusters without suess due to lak ofrepresentation skills. This is a data set where the notion of a struturing diretionis of primordial importane, explaining the failure of hildren in "seeing" solutions2. The χ2 test for goodness of �t rejets the uniformity hypothesis for the adults(p<0.014).B.3.2.4 Type D: Data sets with nested lustersIn this subsetion we analyze the group of data sets with nested lusters (lustersinside lusters) not onsidered in previous types. This group is onstituted bythe set of data sets p, z, aa. For data set "z" there was basially a uniqueproposed solution, shown in Fig.B.15.The other Type D data sets are disussed in the following subsetions.
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(a) s. (b) s1. () s2.s1 s2 Oth.Adults 4 14 2Children 4 12Figure B.14: The solutions proposed for data set "s".
Figure B.15: The solution proposed for data set "z".Data set "p" Data set "p" has two di�erent proposed solutions. The majorityof both hildren and adults proposed solution "p1".Disregarding the solution "Others" the χ2 test for goodness of �t aeptsthe uniformity hypothesis for the adults (p=0.23) and rejets it for the hildren(p=0.02. Disregarding the solution "Others" the χ2 test for independene ledus to aept the independene hypothesis (p=0.31). The Cramer V is moderate(V=0.256). Thus, although the majority hose "p1", the behaviour of adultsand hildren is di�erent and, in fat, there is a more than hane-explained(at 5% signi�ane level) majority hoie of "p1" for the hildren. This is astrange �nding that at �rst sight ould lead us to think that hildren valued



182 APPENDIX B. AN ASSESSMENT OF HUMAN CLUSTERING ONBI-DIMENSIONAL DATA
(a) p. (b) p1. () p2.p1 p2 Oth.Adults 12 7 1Children 10 3 3Figure B.16: The solutions proposed for data set "p".more than adults struturing diretion and/or morphology. However, part ofthe explanation why so many adults hose "p2" may be due to the di�erentpoint densities of the upper and lower part of the annular luster; a featurewhih most of the hildren didn't see.Data set "aa" As we previously mentioned in setion 2, we made this dataset similar to data set "p" for omparison purposes. We have separated theannular luster and we have shifted down the irular luster so that it touhesthe lower setion of the annular luster. By doing that, we tried to pereive ifthe individuals onsider the irular luster as a separate luster.The results show that this solution ("aa2") was not the preferred solution,espeially in the hildren results, but it almost equals solution "aa1" (only twolusters) in the adult results.Disregarding the solution "Others", the χ2 test for goodness of �t aepts theuniformity hypothesis for the adults (p=0.49). Uniformity of the three ategoriesis marginally aeptable for the hildren (p=0.06). The χ2 test for independene,for a Solution variable with three ategories as above, led us to rejet the in-
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(a) aa. (b) aa1. () aa2.aa1 aa2 Oth.Adults 11 8 1Children 8 2 5Figure B.17: The solutions proposed for data set "aa".dependene hypothesis (p=0.038). The Cramer V is high (V=0.42). Therefore,although the "aa2" solution was not the most preferred one by the adults, thereis a lear di�erent behaviour of hildren and adults. Adults were signi�antly(at 5% signi�ane level) more apable of taking into aount the struturingmorphologial feature present in solution "aa2".

B.3.2.5 Type F: Data sets with spiral-shaped lustersIn this subsetion, we analyze the group of data sets with spiral-shaped lusters.This group is onstituted by the set of data sets y, dd. For both data sets, theindividuals basially onsidered them as 2-luster data sets (Fig.B.18), despitethe fat that the lusters present a very omplex struture ompared with theother data sets. We were even surprised by the fat that hildren also reog-nized the two spiral lusters presented in data set "dd"; a good illustration ofprevalene of a struturing diretion over onnetedness.
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(a) y1. (b) dd1.Figure B.18: The most signi�ative solutions proposed for data sets with spiralshaped lusters.B.3.2.6 Type E: Other data setsIn this subsetion we analyze the group of data sets not onsidered in any of theprevious groups. This group is onstituted by the set of data sets f, g, j, u, w, x.For data set "j" there is basially a unique proposed solution that onsiders it asa single luster. The other data sets are disussed in the following subsetions.Data set "f" The results suggested by adults for data set "f" were, in ouropinion, in�uened by the previous solutions given to data set "b". We havealready mentioned that these two data sets were intentionally produed witha small di�erene. In this ase, the two lusters of data set "b" were shiftedto be almost onneted (apparently). We think that this fat, and also thelow density in the "onneting" region, was responsible for the predominant 2lusters solution.However, in the hildren tests, this fat does not happen. It seems that thesolutions that they proposed to data set "b" did not a�et the proposed solutionsfor data set "f", on�rming the overwhelming value that hildren attribute toonnetedness.Disregarding the solution "Others", the χ2 test for goodness of �t rejets(at 5% signi�ane level) the uniformity hypothesis for both adults and hildren(p<0.01). The χ2 test for independene, for a Solution variable with the two"regular" ategories, led us to rejet the independene hypothesis (p≈0). The
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(a) f. (b) f1. () f2.s1 s2 Oth.Adults 15 5Children 2 13 2Figure B.19: The solutions proposed for data set "f".Cramer V is quite high (V=0.61). Thus statistial analysis on�rms that adultand hildren behaviours are di�erent and opposite of eah other.Data set "g" The solutions for this data set are shown in Figure 20.
(a) g. (b) g1. () g2.g1 g2 Oth.Adults 13 6 1Children 6 7 3Figure B.20: The solutions proposed for data set "g".The majority of the adults have onsidered this a problem with 3 lusters.The hildren results are onditioned by the previous mentioned fat that theypay a partiular attention to small lusters.



186 APPENDIX B. AN ASSESSMENT OF HUMAN CLUSTERING ONBI-DIMENSIONAL DATADisregarding solution "Others" the X2 test for goodness of �t lead us to a-ept the uniformity hypothesis for both hildren and adults (here, with p=0.08).The X2 test for independene, for a Solution variable with two ategories (g1,g2), lead us to aept the independene hypothesis (p=0.21). The Cramer V islow (V=0.22).Data set "u" Data set "u" was designed with the objetive of assessingwhether di�erently shaped groups, plaed lose to eah other were onsidered asone or two lusters. Brie�y, to assess the in�uene of the "struturing morphol-ogy" feature.
(a) u. (b) u1. () u2.u1 u2 Oth.Adults 10 7 3Children 9 2 5Figure B.21: The solutions proposed for data set "u".Regarding the solutions proposed by the adults, we see that surprisinglymany adults failed to reognize the existene of three lusters, orrespondingto separating the irular luster from the elongated one. Children, on theontrary, seem to exhibit a de�nite preferene by "u1", valuing the "struturingmorphology" feature. They overwhelmingly separate the irular luster fromthe elongated one.The χ2 test for goodness of �t marginally aepts the uniformity hypothesisfor the adults (p=0.06) and rejets it for the hildren (p=0.03). The χ2 test for



B.3. RESULTS 187independene, for a Solution variable with the three ategories as above, led us toaept the independene hypothesis (p=0.23). The Cramer V is quite moderate(V=0.29).Data sets "w" and "x" The solutions proposed for data sets "w" and "x"were very similar. In both ases, there are onnetions at the ends of the pointlouds that in�uene the di�erent results. Although many two-luster solutionswere proposed, more than 50% of the individuals onsidered these as one-lusterases.
(a) w. (b) w1. () w2.

(d) w3.w1 w2 w3 Oth.Adults 9 5 5 1Children 2 2 9 1Figure B.22: The solutions proposed for data set "w".Disregarding the solution "Others", the χ2 test for goodness of �t aepts theuniformity hypothesis for the adults and for both data sets (p=0.48 and p=0.83for "w" and "x", respetively). The uniformity hypothesis was only aepted forthe hildren for data set "x". Also, the χ2 test for independene, for a Solution
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(a) x. (b) x1. () x2.

(d) x3.x1 x2 x3 Oth.Adults 8 6 6Children 3 3 9 1Figure B.23: The solutions proposed for data set "x".variable with the three regular ategories, yielded di�erent results for the datasets: rejetion for "w" (p=0.046) and aeptane for "x" (p=0.2).These �ndings support the di�erent behaviour of adults and hildren, withthe adults valuing more than hildren the "struturing morphology" feature.B.4 ConlusionsClustering solutions proposed by hildren are quite di�erent from those proposedby adults. We found for several data sets that the X2 test for independene (at5% signi�ane level) either aepted the independene hypothesis (data setsd, g, m, p, u) or rejeted it beause of adult and hildren hoies in oppositediretions (data sets f, k, l, w, x, aa, bb, ). Thus, we found statistial evi-dene supporting the thesis of di�erent luster behaviour of hildren and adults



B.4. CONCLUSIONS 189in those data sets. Children and adults showed a strong agreement of theirlustering preferenes for the data sets where lustering is mainly based on theonnetedness or struturing diretion features (well-separated data sets, nestedlusters, spiral-shaped lusters).Children usually "see" small lusters fousing their attention in small regions,leading to solutions with a large number of lusters. They praise overwhelminglythe onnetedness feature to the point of sari�ing other ones.From the analysis of the di�erent types of data sets we draw the followingonlusions:
• Connetedness or struturing-diretion features are the easiest features tohandle, by both adults and hildren.
• Children are often unable to sari�e onnetedness for other features. Thisis espeially true when data sets exhibit ross-type lusters.
• Point density and morphologial struturing are the most di�ult lusteringfeatures to handle.
• Adults seem apable of performing some sort of hierarhial lustering, usinglustering features at di�erent deision levels. This was mainly apparent inthe solutions produed for data sets "p", "k", "aa" and "".
• A small di�erene in the data sets, like in the pairs "b"-"f" and "p"-"aa", anlead to very di�erent lustering solutions. This is espeially to be expetedwhen the point density and morphologial struturing features ome intoplay.
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